Mathematics 372 — Numerical Linear Algebra
Lab2/Problem Set 3 — due: Friday, February 9

General Information

In this lab/problem set we will study the Cholesky decomposition of positive-definite
symmetric matrices, using MATLAB. A particular item of interest in one of the later
questions will be the relation of the “sparsity pattern” of A (that is, the locations of zero
and nonzero entries in the matrix) and the sparsity pattern of the Cholesky factor R.

MATLAB Practice

The command for computing Cholesky factorizations in MATLAB is chol (logically
enough!). To use it, you can enter the matrix A first as we discussed before, then enter a
command of the form

chol(A)

The output will be the Cholesky factor R. For example enter the matrix

16 4 8 4
4 10 8 4

(1) A= 8 8 12 10|’
4 4 10 12

then compute the Cholesky factor and call the result RB. Of course we should have A = R'R
(the Cholesky factor is the “matrix square root”). To check that the result is correct, you
can compute R*R in MATLAB with

R> x R

(the “prime” is transpose in MATLAB, x is matrix multiplication as we saw before). Try
it and compare with the original matrix A. The matrix (1) is simpler than many because
the Cholesky factor is also an integer matrix. That is not always true since as we know
the computation of the entries in R involves taking square roots. To see a more typical
example, let’s add a 4 identity matrix I to this A:

AA = A + eye(4)

(someone had a sense of humor here!). Then compute the Cholesky factor and check that
it is correct. Call your computed Cholesky factor RR.

The Cholesky factorization is only defined for positive definite symmetric matrices. If
you enter a matrix that is symmetric but not positive definite, then MATLAB will produce
an error message. For instance try chol(B) for

B:<_11 _11).



B is not positive definite (why not?)

Something more subtle happens if you enter a matrix that is not symmetric. In that
case, MATLAB doesn’t actually check to see whether the matrix is symmetric, it just
assumes that it s and works with the entries above the diagonal as in the formulas for
Cholesky factorization that we wrote down in class. For instance, try

12 1
r= ( 2 11)
and compute chol(T). If the output is R, what matrix is R’ * R here?

Recall that we got into the whole “matrix factorization game” and the idea of the
Cholesky factorization by way of the observation that solving systems of linear equations
for upper- or lower-triangular coefficient matrices is especially simple (no row-reductions
are necessary if we use backward or forward substitution). For instance suppose we want
to solve Az = b for some b. Since A = R'R, as we know, this can be done in two steps.
By associativity of matrix multiplication, R*(Rz) = b First we solve the system Ry = b,
then we solve Rx = y for z. Carry out this process in MATLAB for the system AAz =b
with AA as above, and a vector b of your choice. Check your final answer.

Finally, for some of the problems below, we will need to introduce the idea of sparse
matrices. A somewhat imprecise, but suggestive, way to understand this idea is that a
sparse matrix is one where some “large” proportion of the total entries are zeroes. One
could also quantify this, of course, by computing the actual proportion of zero entries
in the matrix. Matrices with “almost all” entries nonzero are called “dense” matrices.
MATLAB has an interesting command called spy that produces a plot indicating the
sparsity structure of a matrix. For instance, enter

A=1T[10-1; 230; -1 -12]
spy (A)

What does the plot mean? Of course this is more interesting for “big” matrices (where
we might not even want to try to list all the entries!) For example, there are a number
of “builtin” big example matrices in MATLAB, including one 479 x 479 matrix called
west0479. To access it and generate the spy plot, enter

load west0479
spy (west0479)

Even though we don’t want to try to see the whole 479 x 479 matrix, we can visualize
where it has nonzero entries and see some things about it. For instance, is west0479 a
symmetric matrix? The number nnz = 1887 at the bottom of the plot is the actual number
of nonzero entries. What fraction of the total entries in this matrix are zero?

If a matrix is very sparse in this intuitive sense, then storing the whole matrix (with
all the zeroes explicitly filled in) is an inefficient use of the computer memory (especially
if the matrix is big, say 10000 x 10000). So an alternate way to think about storing the
information in a matrix is to give the total numbers of rows and columns, then list only the
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nonzero entries, together with their row and column numbers. If a pair of a row number
and a column number doesn’t appear, then that entry is automatically zero. A matrix
stored in this way is properly called a matrix with a sparse representation, but we will
also often refer to it as a sparse matriz (even if the proportion of zero entries is not that
large). A moment’s thought will convince you that it is possible to compute matrix sums,
products, etc. using this sort of representation of matrices (though it would be awkward
by hand!). And MATLAB has two different ways of dealing with matrices:

e as dense matrices (all the matrices we have entered manually to this point have been
dense), or

e as sparse (i.e. sparsely represented) matrices (west0479 above is a sparse matrix).
For instance try entering the command

west0479

Two commands sparse and dense convert from one representation to the other (and are
inverse functions of one another!). With A the 3 x 3 matrix above

AS = sparse(A)

The output is the sparse representation. Note that there are exactly seven items in the
list (each item being a pair of a row and column number, together with the corresponding
entry in A). The command dense (AS) returns to the dense representation.

The MATLAB matrix commands we have seen to this point are set up so that either
dense or sparse matrices can be supplied as the input (as long as the same form is used
for all inputs!), and the output will be a matrix of the same type. Some other commands
in the future will only take sparse matrix inputs.

Problems

Note: Several problems below deal with rather large matrices. You probably won’t want to
print them out, either in dense or in sparse representations! Recall that a semicolon at the
end of a MATLAB statement does the calculation but suppresses the output.

I. Recall the systems of linear equations we obtained by discretizing the 2nd order ODE
boundary value problem in Lab 1. If in the ODE

ay” +by' +cy = f,
the constants are a = —1, b = 0, ¢ = 1 (as before), then the coefficient matrix Ay is

positive definite for all V.

A) Use MATLAB to compute the Cholesky factors Ry for the coefficient matrices of
these systems for N = 6, 8,20. Show how you could recover the approximate solutions
of the boundary value problem you had in the first lab using the Cholesky factors Ry .
B) What do you notice about the locations of nonzero entries in Ry in these examples?
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C) (non-lab problem) An n x n matrix A = (a;;) is said to be tridiagonal if a;; = 0 for all
entries with j > ¢+ 1 and also ¢ > j + 1 (fancier way to say the same thing: a;; =0
whenever | — j| > 1). The entries in the “band” consisting of the main diagonal and
the upper and lower diagonals on either side of it may or may not be zero. Give a
full mathematical proof using the formulas we developed for computing the Cholesky
factor that if A is tridiagonal, then R = (r;;) is an upper triangular matrix with
r;; = 0 whenver 57 > 4+ 1. In other words R is upper triangular and also tridiagonal.
Suggestion: To see the ideas you need for this proof, it will probably help to work out
one or two 4 X 4 or 5 X 5 examples by hand just to see which entries are actually used
where in the computation. The matrix

A=

S o
e SR N
N = )
N e =)

should be instructive. Why do the zero entries in R end up being zero?

II. The “bucky ball” is a polyhedron with 60 vertices, 32 faces (12 pentagons and 20
hexagons), and 30 edges. If you imagine taking one and “inflating” it so the surface
becomes spherical, you will see the edges forming the pattern of seams on a soccer ball. This
shape also appears in chemistry. There is a carbon-hydrogen chemical compound called
“fullerene” where carbon atoms are arranged at the vertices of one of these polyhedra, and
the carbon-carbon bonds are the edges. To see a picture, look up the Wikipedia entry for
“Fullerene”. The names “bucky ball” and “Fullerene” refer to the architect and futurist
Buckminster Fuller who proposed constructing buildings called geodesic domes with these
shapes.

We can get a matriz from this shape in the following way. First we label the vertices
1...60 in some fixed way. Then we make a 60 x 60 matrix B = (b;;) where

b — 1 if there is an edge vertex ¢ to vertex j
771 0 if there is no edge

(There are no edges from vertex i to vertex ¢ for any 4.) This gives a pretty sparse 60 x 60
matrix which is supplied in MATLAB under the name bucky (you don’t load this one,
it’s a predeclared name in MATLAB). Note: This example is also discussed in the text,
but try to figure this out on your own before you look there to check your work.

A) (non-lab) From the picture of fullerene in Wikipedia above, or from your experience
of soccer balls, (or if absolutely necessary by examining the entries in bucky directly),
how many nonzero entries are there on each column or row of B? Why?

B) (non-lab) Prove that B is not positive definite (no matter how we label the vertices).

C) To make a positive definite matrix, we can add a positive multiple of the identity
matrix Igp. Since bucky is a MATLAB sparse matrix, we want a sparse identity
matrix. Compute the Cholesky factors for the matrices

B+ 4y, B+10Is, B+ 20I
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and examine their spy plots. Does the spy plot of the Cholesky factor of B + clgg
appear to depend on the value of ¢?

ITI. We will consider the relation between the spy plots of Cholesky factors R and the spy
plots of the original positive definite matrices A = R'R in this question.

The envelope of a symmetric matrix A or an upper triangular matrix U is a set of
ordered pairs (k,£) with £ > k representing the locations of the nonzero entries in the
upper triangle of the matrix. It is defined like this: For each column j =1,...,n we locate
the first nonzero entry in that column (counting down from the top of the matrix). Say
this happens in location (m, j). Then the rest of the pairs representing locations in that
column down to the diagonal go into the envelope: (m —1,j), (m —2,7),...,(j — 1,7).

A) On a printout spy plot of the bucky matrix B from problem II, indicate (by hand)
where the envelope of B is. Do the same on the spy plot of the Cholesky factor of
B + 41gp.

B) (non-lab) The tridiagonal examples in question I and the example from part A should
make the following theorem plausible.

Theorem. If A is positive definite symmetric and R is its Cholesky factor, then A and R
have the same envelope.

There is a proof of this in the text in Theorem 1.5.7 (page 57-58). It depends on the
“bordered form” of Cholesky factorization on page 43. Your job in this part is to work
through the details of that proof, and write out the complete argument in your own
words. In the course of this, you will want to supply a proof for Exercise 1.4.35 in the
text.



