MATH 241
Solution for Quiz 7
October 11, 2013
A) (20) Using the method of Lagrange Multipliers, find the maximum and minimum values of $f(x, y)=2 x+3 y$ on the constraint curve

$$
E=\left\{(x, y) \left\lvert\, x^{2}+\frac{y^{2}}{9}=1\right.\right\} .
$$

(If you run into trouble with the algebra, for more partial credit, sketch what the level curves of f should look like at the maximum and minimum together with the constraint curve.)

Solution: We have $f_{x}=2, f_{y}=3$ and $g_{x}=2 x, g_{y}=\frac{2 y}{9}$. Therefore the Lagrange Equations are

$$
\begin{aligned}
2 & =2 \lambda x \\
3 & =\frac{2 \lambda y}{9} \\
x^{2}+\frac{y^{2}}{9} & =1
\end{aligned}
$$

If we multiply the first equation by y and the second by $27 x$, then we get

$$
\begin{equation*}
2 y=2 \lambda x y=27 x \tag{1}
\end{equation*}
$$

so $y=\frac{27 x}{2}$. Substituting into the constraint equation, we get

$$
x^{2}\left(1+\frac{81}{4}\right)=1 \Rightarrow x= \pm \frac{2}{\sqrt{85}}
$$

Then equation (1) says

$$
y= \pm \frac{27}{\sqrt{85}}
$$

Note equation (1) implies that the positive sign for x gives a positive y and the negative sign for x gives a negative y. This means that there are only two critical points of f restricted to E :

$$
\left(\frac{2}{\sqrt{85}}, \frac{27}{\sqrt{85}}\right),\left(\frac{-2}{\sqrt{85}}, \frac{-27}{\sqrt{85}}\right)
$$

The function $f(x, y)=2 x+3 y$ has a positive value at the first point and a negative value at the second point, so the first gives the maximum value $\sqrt{85}$, and the second gives the minimum value $-\sqrt{85}$.

The geometric meaning of the Lagrange equations is that the level curves for $f(x, y)=$ $2 x+3 y$ at the maximum and minimum should be tangent to the ellipse E. The level curves of f are the lines $2 x+3 y=c$, or $y=\frac{-2}{3} x+\frac{c}{3}$, so these are straight lines of slope $m=\frac{-2}{3}$. Here is a picture of the constraint curve and the two contours for the maximum and minimum values:

