Mathematics 241, section 1 - Multivariable Calculus

Midterm Exam 2 Solutions
November 1, 2013
I. All parts of this problem refer to the vector field

$$
\mathbf{F}(x, y)=\left(x^{2}-2 x, x y-y\right) .
$$

A. (10) Find all critical points of $\mathbf{F}(x, y)$.

Solution: The critical points are the solutions of the simultaneous system

$$
\begin{aligned}
x^{2}-2 x & =x(x-2)=0 \\
x y-y & =(x-1) y=0
\end{aligned}
$$

The solutions are $(0,0)$ and $(2,0)$.
B. (5) There are two vector fields plotted on the back of this sheet. Say which one shows $\mathbf{F}(x, y)$ and use that plot to classify each of the critical points as a source, sink, saddle, or center.

Solution: This is Vector Field 2 in the plots (the critical points of Vector Field 1 are not at the right locations). From the plot, $(0,0)$ is a sink and $(2,0)$ is a source.
C. (20) Show that $\alpha(t)=\left(0,4 e^{-t}\right)$ and $\beta(t)=\left(\frac{2}{1+e^{2 t}}, 0\right)$ are both flow lines of F. What are $\lim _{t \rightarrow \infty} \alpha(t)$ and $\lim _{t \rightarrow \infty} \beta(t)$?
Solution: For $\alpha(t)$ we compute $\alpha^{\prime}(t)=\left(0,-4 e^{-t}\right)$. On the other hand $(\mathbf{F} \circ \alpha)(t)=\left(0^{2}-0,0\right.$. $\left.4 e^{-t}-4 e^{-t}\right)=\left(0,-4 e^{-t}\right)$. Therefore $\alpha(t)$ is a flow line of \mathbf{F}. For $\beta(t)$, similarly, we have

$$
\beta^{\prime}(t)=\left(\frac{-4 e^{2 t}}{\left(1+e^{2 t}\right)^{2}}, 0\right)
$$

On the other hand,

$$
\begin{aligned}
(\mathbf{F} \circ \beta)(t) & =\left(\left(\frac{2}{1+e^{2 t}}\right)^{2}-\frac{4}{1+e^{2 t}}, 0\right) \\
& =\left(\frac{4-4\left(1+e^{2 t}\right)}{\left(1+e^{2 t}\right)^{2}}, 0\right) \\
& =\left(\frac{-4 e^{2 t}}{\left(1+e^{2 t}\right)^{2}}, 0\right) .
\end{aligned}
$$

D. (5) Is there a scalar-valued function $f(x, y)$ such that $\mathbf{F}(x, y)=\nabla f(x, y)$? Why or why not?

Solution: No, there is not. The reason is that we would need to have $\frac{\partial f}{\partial y}=x y-y$, so $f(x, y)=\frac{x y^{2}}{2}-\frac{y^{2}}{2}+g(x)$, for some function $g(x)$. But then $\frac{\partial f}{\partial x}=\frac{y^{2}}{2}+g^{\prime}(x)$. There is no y^{2} in the first component of \mathbf{F}, so this is not possible.
II. In the neighborhood of Eagle Pass, the landscape has elevation in feet above sea level given by $f(x, y)=\frac{x^{2}}{4}-y^{2}+1000$.
A. (10) Sketch the contours of $f(x, y)$ for $c=999,1000,1001$ on the same set of axes.

Solution: The contours for $c=999$ and $c=1001$ are hyperbolas, the contour for $c=1000$ is the union of the two lines $y= \pm \frac{x}{2}$. (Those lines are the asymptote lines of the hyperbolas.)
B. (10) Compute the directional derivative $D_{u} f(2,1)$ for a general unit vector.

Solution: We have $\nabla f(x, y)=\left(\frac{x}{2},-2 y\right)$, so $\nabla f(2,1)=(1,-2)$. The directional derivative $D_{u} f(2,1)=\nabla f(2,1) \cdot u=u_{1}-2 u_{2}$.
C. (5) In the direction of which unit vector u should you walk from the point with $(x, y)=(2,1)$
in order to decrease your elevation at the fastest rate?
Solution: The unit vector in the direction of $-\nabla f(2,1)$, so

$$
u=\left(\frac{-1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)
$$

III. All parts of this problem refer to the function

$$
f(x, y)=\frac{x^{3}-3 x y^{2}}{x^{2}+y^{2}} \text { if }(x, y) \neq(0,0) \text { and } f(0,0)=0 .
$$

A. (15) Find the tangent plane to $z=f(x, y)$ at $(1,1, f(1,1))$. We have, at $(x, y) \neq(0,0)$:

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =\frac{\left(x^{2}+y^{2}\right)\left(3 x^{2}-3 y^{2}\right)-\left(x^{3}-3 x y^{2}\right)(2 x)}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{x^{4}+6 x^{2} y^{2}-3 y^{4}}{\left(x^{2}+y^{2}\right)^{2}} \\
\therefore \frac{\partial f}{\partial x}(1,1) & =\frac{4}{4}=1 .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\left(x^{2}+y^{2}\right)(-6 x y)-\left(x^{3}-3 x y^{2}\right)(2 y)}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{-8 x^{3} y}{\left(x^{2}+y^{2}\right)^{2}} \\
\therefore \frac{\partial f}{\partial x}(1,1) & =\frac{-8}{4}=-2 .
\end{aligned}
$$

The tangent plane is $z=-1+(1)(x-1)+(-2)(y-1)$, or after simplifying: $z=x-2 y$.
B. (10) Does $\frac{\partial f}{\partial x}(0,0)$ exist? If so, find it; if not say why not.

Solution: By the limit definition,

$$
\begin{aligned}
\frac{\partial f}{\partial x}(0,0) & =\lim _{h \rightarrow 0} \frac{f(0+h, 0)-f(0,0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{3} / h^{2}-0}{h} \\
& =\lim _{h \rightarrow 0} 1 \\
& =1 .
\end{aligned}
$$

So the answer is yes.
IV. (10) Can the curve $\alpha(t)=(2 \cos (t), \sin (t))$ for $t \in(0, \infty)$ be a flow line of the vector field $\nabla f(x, y)$ for a differentiable function f ? Why or why not?

Solution: The answer is NO. Notice that $\alpha(t)$ is an ellipse with the usual counterclockwise parametrization and $\alpha(0)=\alpha(2 \pi)=(2,0)$. If this was a flow line for the gradient vector field for some $f(x, y)$, then as we know, $f(x, y)$ would be steadily increasing with t as we move along the flow line. However that is not possible since $f(\alpha(0))=f(\alpha(2 \pi))$.

Extra Credit (10) Refer to the function in question III. Let m be arbitrary and compute $\lim _{t \rightarrow 0} f(t, m t)$ (the limit of the value of f along the line through the origin in the direction of the vector $(1, m)$). Is $\lim _{t \rightarrow 0}(f \circ \alpha)(t)=0$ for every differentiable curve $\alpha(t)$ with $\alpha(0)=(0,0)$? Explain.

Solution: We have

$$
f(t, m t)=\frac{t^{3}\left(1-3 m^{2}\right)}{t^{2}\left(1+m^{2}\right)}=\frac{t\left(1-3 m^{2}\right)}{\left(1+m^{2}\right)}
$$

Hence $\lim _{t \rightarrow 0} f(t, m t)=0$ for all m. It will be true that $\lim _{t \rightarrow 0}(f \circ \alpha)(t)=0$ here because

$$
\frac{x^{3}-3 x y^{2}}{x^{2}+y^{2}}=x \cdot \frac{x^{2}-3 y^{2}}{x^{2}+y^{2}}
$$

the second factor takes only values between 1 and -3 , while the $x \rightarrow 0$ if we are moving along any curve $\alpha(t)$ with $\alpha(0)=0$. By the squeeze theorem, the limit must exist and equal zero.

Vector Field 1:

Vector Field 2:

