Mathematics 241, section 1 – Multivariable Calculus Midterm Exam 2 Solutions November 1, 2013

I. All parts of this problem refer to the vector field

$$\mathbf{F}(x,y) = (x^2 - 2x, xy - y),$$

A. (10) Find all critical points of $\mathbf{F}(x, y)$.

Solution: The critical points are the solutions of the simultaneous system

$$\begin{array}{rcl} x^2 - 2x &=& x(x-2) = 0 \\ xy - y &=& (x-1)y = 0 \end{array}$$

The solutions are (0,0) and (2,0).

B. (5) There are two vector fields plotted on the back of this sheet. Say which one shows $\mathbf{F}(x, y)$ and use that plot to classify each of the critical points as a source, sink, saddle, or center.

Solution: This is Vector Field 2 in the plots (the critical points of Vector Field 1 are not at the right locations). From the plot, (0,0) is a *sink* and (2,0) is a *source*.

C. (20) Show that $\alpha(t) = (0, 4e^{-t})$ and $\beta(t) = \left(\frac{2}{1+e^{2t}}, 0\right)$ are both flow lines of F. What are $\lim_{t\to\infty} \alpha(t)$ and $\lim_{t\to\infty} \beta(t)$?

Solution: For $\alpha(t)$ we compute $\alpha'(t) = (0, -4e^{-t})$. On the other hand $(\mathbf{F} \circ \alpha)(t) = (0^2 - 0, 0 \cdot 4e^{-t} - 4e^{-t}) = (0, -4e^{-t})$. Therefore $\alpha(t)$ is a flow line of \mathbf{F} . For $\beta(t)$, similarly, we have

$$\beta'(t) = \left(\frac{-4e^{2t}}{(1+e^{2t})^2}, 0\right)$$

On the other hand,

$$\begin{aligned} (\mathbf{F} \circ \beta)(t) &= \left(\left(\frac{2}{1 + e^{2t}} \right)^2 - \frac{4}{1 + e^{2t}}, 0 \right) \\ &= \left(\frac{4 - 4(1 + e^{2t})}{(1 + e^{2t})^2}, 0 \right) \\ &= \left(\frac{-4e^{2t}}{(1 + e^{2t})^2}, 0 \right). \end{aligned}$$

D. (5) Is there a scalar-valued function f(x, y) such that $\mathbf{F}(x, y) = \nabla f(x, y)$? Why or why not? Solution: No, there is not. The reason is that we would need to have $\frac{\partial f}{\partial y} = xy - y$, so $f(x, y) = \frac{xy^2}{2} - \frac{y^2}{2} + g(x)$, for some function g(x). But then $\frac{\partial f}{\partial x} = \frac{y^2}{2} + g'(x)$. There is no y^2 in the first component of \mathbf{F} , so this is not possible.

II. In the neighborhood of Eagle Pass, the landscape has elevation in feet above sea level given by $f(x,y) = \frac{x^2}{4} - y^2 + 1000.$

A. (10) Sketch the contours of f(x, y) for c = 999, 1000, 1001 on the same set of axes.

Solution: The contours for c = 999 and c = 1001 are hyperbolas, the contour for c = 1000 is the union of the two lines $y = \pm \frac{x}{2}$. (Those lines are the asymptote lines of the hyperbolas.)

B. (10) Compute the directional derivative $D_u f(2,1)$ for a general unit vector.

Solution: We have $\nabla f(x,y) = \left(\frac{x}{2}, -2y\right)$, so $\nabla f(2,1) = (1,-2)$. The directional derivative $D_u f(2,1) = \nabla f(2,1) \cdot u = u_1 - 2u_2$.

C. (5) In the direction of which unit vector u should you walk from the point with (x, y) = (2, 1) in order to decrease your elevation at the fastest rate?

Solution: The unit vector in the direction of $-\nabla f(2,1)$, so

$$u = \left(\frac{-1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$$

III. All parts of this problem refer to the function

$$f(x,y) = \frac{x^3 - 3xy^2}{x^2 + y^2}$$
 if $(x,y) \neq (0,0)$ and $f(0,0) = 0$.

A. (15) Find the tangent plane to z = f(x, y) at (1, 1, f(1, 1)). We have, at $(x, y) \neq (0, 0)$:

$$\frac{\partial f}{\partial x} = \frac{(x^2 + y^2)(3x^2 - 3y^2) - (x^3 - 3xy^2)(2x)}{(x^2 + y^2)^2}$$
$$= \frac{x^4 + 6x^2y^2 - 3y^4}{(x^2 + y^2)^2}$$
$$\therefore \frac{\partial f}{\partial x}(1, 1) = \frac{4}{4} = 1.$$

Similarly,

$$\begin{aligned} \frac{\partial f}{\partial y} &= \frac{(x^2 + y^2)(-6xy) - (x^3 - 3xy^2)(2y)}{(x^2 + y^2)^2} \\ &= \frac{-8x^3y}{(x^2 + y^2)^2} \\ \cdot \frac{\partial f}{\partial x}(1,1) &= \frac{-8}{4} = -2. \end{aligned}$$

The tangent plane is z = -1 + (1)(x - 1) + (-2)(y - 1), or after simplifying: z = x - 2y. B. (10) Does $\frac{\partial f}{\partial x}(0,0)$ exist? If so, find it; if not say why not.

Solution: By the limit definition,

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h}$$
$$= \lim_{h \to 0} \frac{h^3/h^2 - 0}{h}$$
$$= \lim_{h \to 0} 1$$
$$= 1.$$

So the answer is yes.

IV. (10) Can the curve $\alpha(t) = (2\cos(t), \sin(t))$ for $t \in (0, \infty)$ be a flow line of the vector field $\nabla f(x, y)$ for a differentiable function f? Why or why not?

Solution: The answer is NO. Notice that $\alpha(t)$ is an ellipse with the usual counterclockwise parametrization and $\alpha(0) = \alpha(2\pi) = (2,0)$. If this was a flow line for the gradient vector field for some f(x,y), then as we know, f(x,y) would be steadily *increasing with* t as we move along the flow line. However that is not possible since $f(\alpha(0)) = f(\alpha(2\pi))$.

Extra Credit (10) Refer to the function in question III. Let m be arbitrary and compute $\lim_{t\to 0} f(t, mt)$ (the limit of the value of f along the line through the origin in the direction of the vector (1, m)). Is $\lim_{t\to 0} (f \circ \alpha)(t) = 0$ for every differentiable curve $\alpha(t)$ with $\alpha(0) = (0, 0)$? Explain.

Solution: We have

$$f(t,mt) = \frac{t^3(1-3m^2)}{t^2(1+m^2)} = \frac{t(1-3m^2)}{(1+m^2)}$$

Hence $\lim_{t\to 0} f(t, mt) = 0$ for all m. It will be true that $\lim_{t\to 0} (f \circ \alpha)(t) = 0$ here because

$$\frac{x^3 - 3xy^2}{x^2 + y^2} = x \cdot \frac{x^2 - 3y^2}{x^2 + y^2}$$

the second factor takes only values between 1 and -3, while the $x \to 0$ if we are moving along any curve $\alpha(t)$ with $\alpha(0) = 0$. By the squeeze theorem, the limit must exist and equal zero.

Vector Field 1:

Vector Field 2:

7	\mathbf{Y}	7	ľ	₽.	4	Ļ	7	~	~	•	~	۲	١	t	î	1	1	۴	1
7	1	Ň	7	1	Į.	4	1	~	•-	•	٩.,	۲	٦	t	1	1	1	1	1
1	N	Ň	1	1	Į.	4	2	~	~	~~	~	۲	٩	9	1	1	1	1	1
5	1	N	Ń	1	1	6	4	~	•	-	ς.	۲.	٢	1	1	1	1	1	~
~	1	1	1	1	į.	7	2	~	•	•	•	•	۲	٩	t	P	1	1	/
~	\mathbf{a}	\mathbf{i}	χ	4.	1	1	~	•~	+-	•	•	ς.	۲	t	1	1	1		_>
~	~	\mathbf{a}	\mathbf{N}	١.	1	1	~	~	+	←-	•	5	٦	١	1	۶	۶	~	~
~~	~	~	5	Ν.	1	×	•	~	+-	+	⊷.	~	ς.	٦	1	~	>	~~	هر
~~	~~	~	1	$\mathbf{\tilde{z}}$	1	~	+	-	÷	•	⊷.	۰.	~	۱	/	>	~~	~~	هـ
		-+		~	L	*	+-	•	←	•	4	+	*-	•	~	هر.	-+	_+	+
-					r –														
=1	•			-0	~	•	÷-	•	+	. −	+	÷	+-	2	?	~	-+	+	3.
=1 ~~	• •		 	-0	۰ ۱	1 1	÷.	1 1	+	i⊷ ⊷	+	+- +*		2	~		-+ -+	+	
-1 -^^	 	 -^	۔ مہ م	-0 / /	۰ ۱ ۱	1 1 1	7 7 7.	1 1 1	+ +	- -	+ + + +	• * •		2	~ ~ ~	111	1 1 1	1 7 1	
	- - - - - - - - 		・ ・ ・ ・ ・ ・ ・ ・ ・	-0 / / /	۰ ۱ ۱	1111	7777	1111	1 1 1	+ + +-	1 1 1	- + +	+ 	2 4 4	~ ~ ~ ~	1117	1111	1111	+** * / /
	1 4 4 1 7 9 9 9	1 1 2 2 8	- - - ノ ア ノ ア	-0 ////////////////////////////////////	- - 	16660	1111	1111	1 1 1 1 1	•				21111	~ ~ ~ ~ ~	11111	11170	11117	+** + 1 / /
-+# * * * * * *	1 1 1 1 1 1 1	1 1 2 2 2 2 2		-0 ///// /1 /	- - - - - - - - - - - - - - - - - - -	1 6 8 8 8 8	111111	11111	1 1 1 1 1 1		11111			2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	* * * * * *	11111	111777	111177	+ + + + + + + + + + + + + + + + + + + +
-+# * * * * * * *	1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2		-0 / / / A / / /		1666000	11111111	111111	1 1 1 1 1 1 1 1		111111	1 * 1 / 1 / 1 /		2 1 1 1 1 1 1	** ** * * * * * *	~~~~	11111111	1111777	- 4 6 6 7 7 7 7 M
HH 1 1 7 7 7 7 7	1 1 1 1 1 1 1 1 1 1			-0 ////////////////////////////////////		1 6 8 8 8 8 8 8 8	111111111	11111111	11111111		1111111	- *		2 1 1 1 1 1 1	مدمد مد مر مر بر ا	x x x x x x 1 1 1	22224444	2 6 6 6 6 6 6 6 6 6 6	- ~ ~ ~ / / / / / / M-
	1 1 1 1 1 1 1 1 1 1 1 1	~ ~ ~ ~ ~ ? ? ? ? ?		-0 / / / A / / / / /		1 6 8 8 9 9 9 9 9	+ + + + + + + + + + + + + + + + + + + +	111111111	7 7 7 7 7 7 7 7 1 1		111111111					a a a a a a a a a a a	a a a a a a a a a a t	x x x x x x 1 1 1	- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~