Mathematics 241, section 1 - Multivariable Calculus

Solutions for Exam 1
October 1, 2010
I. All parts of this question refer to the three points $P=(1,0,1), Q=(1,2,-2)$, and $R=(1,-1,1)$ in \mathbf{R}^{3}.
A) (15) Find the equation of the plane containing P, Q, R.

Solution: The vector from P to Q is $Q-P=(0,2,-3)$ and the vector from P to R is $R-P=(0,-1,0)$. Hence $N=(Q-P) \times(R-P)=(-3,0,0)$ is a normal vector for the plane we want. Using $\frac{-1}{3} N$ and the point P, equation is

$$
x=1 .
$$

(Note that this could also be derived by observation without any calculations!)
B) (15) Give a parametrization of the line segment from R to Q (in that direction), including the proper range of t-values. Which t-value gives the midpoint?

Solution: The direction vector we want is $Q-R=(0,3,-3)$. The line segment is

$$
(1,-1,1)+t(0,3,-3)=(1,-1+3 t, 1-3 t) \quad \text { where } 0 \leq t \leq 1
$$

The midpoint is obtained with $t=1 / 2$. (The line segment is parametrized with a constant speed curve, so over the interval $[0,1]$, the midpoint is obtained for $t=1 / 2$.)
C) (10) Compute the angle between the vectors $v=Q-P$ and $w=R-P$.

Solution: $Q-P=(0,2,-3)$ and $R-P=(0,-1,0)$ from part A. The angle satisfies

$$
\cos (\theta)=\frac{(0,2,-3) \cdot(0,-1,0)}{\sqrt{13} \cdot 1}=\frac{-2}{\sqrt{13}} .
$$

The angle is

$$
\theta=\cos ^{-1}\left(\frac{-2}{\sqrt{13}}\right) \doteq 2.16 \text { radians }
$$

II. II. Let $\alpha(t)=(u(t), v(t))$ and $\beta(t)=(w(t), z(t))$ be parametric curves in $\mathbf{R}^{\mathbf{2}}$.
A) (10) Show that if $\alpha(t)$ and $\beta(t)$ are differentiable, then

$$
\frac{d}{d t}(\alpha(t) \cdot \beta(t))=\alpha^{\prime}(t) \cdot \beta(t)+\alpha(t) \cdot \beta^{\prime}(t)
$$

(where • denotes the dot product).
Solution: We have

$$
\alpha(t) \cdot \beta(t)=u(t) w(t)+v(t) z(t)
$$

So by the product and sum rules for derivatives:

$$
\begin{aligned}
\frac{d}{d t}(\alpha(t) \cdot \beta(t)) & =u^{\prime}(t) w(t)+u(t) w^{\prime}(t)+v^{\prime}(t) z(t)+v(t) z^{\prime}(t) \\
& =\left(u^{\prime}(t) w(t)+v^{\prime}(t) z(t)\right)+\left(u(t) w^{\prime}(t)+v(t) z^{\prime}(t)\right) \\
& =\alpha^{\prime}(t) \cdot \beta(t)+\alpha(t) \cdot \beta(t)
\end{aligned}
$$

This is what we wanted to show.
B) (10) Let $\beta(t)$ be a parametric curve in \mathbf{R}^{2}. Suppose that $\beta(t) \cdot \beta(t)=1$ (dot product) for all t. Show that the vector $\beta^{\prime}(t)$ is orthogonal to the vector $\beta(t)$ for all t. Solution: Using part A and the commutativity of the dot product, we see

$$
0=\frac{d}{d t}(\beta(t) \cdot \beta(t))=2 \beta(t) \cdot \beta^{\prime}(t)
$$

Therefore $\beta(t) \cdot \beta^{\prime}(t)=0$, which shows that they are orthogonal.
III. All parts of this question refer to

$$
\alpha(t)=(\cos (2 t) \cos (t), \cos (2 t) \sin (t))
$$

called a 4-leaved rose curve.
A) (15) Starting from $t=0$, what is the first t with $\alpha(t)=(0,0)$? At how many different t is $\alpha(t)=(0,0)$ in the range $0 \leq t<\pi$?

Solution: Starting from $t=0$, the first t with $\alpha(t)=(0,0)$ is $t=\pi / 4$. There are two t in the range $0 \leq t<\pi$ where $\alpha(t)=(0,0): t=\pi / 4,3 \pi / 4$. These all come from zeroes of the function $\cos (2 t)$.
B) (15) Find a parametrization of the tangent line to the rose curve at $t=\pi / 4$.

Solution: We have

$$
\alpha(\pi / 4)=(\cos (\pi / 2) \cos (\pi / 4), \cos (\pi / 2) \sin (\pi / 4))=(0,0)
$$

Then by the product rule in each component,

$$
\alpha^{\prime}(t)=(-2 \sin (2 t) \cos (t)-\cos (2 t) \sin (t),-2 \sin (2 t) \sin (t)+\cos (2 t) \cos (t)) .
$$

Hence

$$
\alpha^{\prime}(\pi / 4)=(-\sqrt{2},-\sqrt{2}) .
$$

The tangent line is

$$
\{(-s \sqrt{2},-s \sqrt{2}) \mid s \in \mathbf{R}\} .
$$

C) (10)Give a parametrization of a circle that will fit completely inside the "leaf" of $\alpha(t)$ in quadrants I and IV. (Any circle that does that is OK.)

Solution: If we place the center at $(1 / 2,0)$, then to fit inside the "leaf" in quadrants I and IV, the radius must be small, something like $1 / 10$. Something like

$$
\beta(t)=(1 / 2+\cos (t) / 10, \sin (t) / 10)
$$

is a reasonable answer.

Extra Credit (10) Identify and sketch the slices of the surface

$$
\left\{(x, y, z) \in \mathbf{R}^{3} \mid x^{2}-y^{2}+z^{2}=1\right\}
$$

in the planes $x=1$ and $x=2$.
Solution: The slice in the plane $x=1$ is given by $-y^{2}+z^{2}=0$. This is the union of two lines: $x=1, y=z$, and $x=1, y=-z$. The slice in the plane $x=2$ is given by $-y^{2}+z^{2}=-3$, or $\frac{y^{2}}{3}-\frac{z^{2}}{3}=1$. This is a hyperbola opening in the direction of the positive and negative y-axes.

