MATH 241 - Multivariable Calculus
Sample Exam Questions for Exam 1 - Solutions
September 23, 2013
I. Consider the set $Q=\left\{(x, y, z) \in \mathbf{R}^{3} \mid x^{2}-y^{2} / 4-z^{2}=1\right\}$.
A) Identify the slices of Q in planes parallel to the three coordinate planes. Take $x, y, z=$ $-2,-1,0,1,2$ (at least).
Solution: The slices by the planes $x=c$ have equations $y^{2} / 4+z^{2}=c^{2}-1$. These are ellipses if $c>1$ or $c<-1$, single points if $c= \pm 1$ and empty if $-1<c<1$. The slices by planes $y=c$ have equations $x^{2}-z^{2}=1+c^{2} / 4$. These are hyperbolas for all c in the planes parallel to the $x z$-plane). The slices by planes $z=c$ have equations $x^{2}-y^{2} / 4=1+c^{2}$. These are also hyperbolas.
B) Use that information to generate a rough sketch of Q or a verbal description.

Solution: See the Maple plot posted with these solutions. A verbal description would go something like this: The surface consists of two sheets: one with $x \geq 1$ and the other with $x \leq-1$. There are no points on the surface with $-1<x<1$. The two sheets both have elliptical cross-sections by planes $x=c$. This is called a hyperboloid of two sheets because the sections by planes $y=c$ and $z=c$ are both hyperbolas.
C) Show that the image of the parametric curve $\alpha(t)=\left(\left(e^{t}+e^{-t}\right) / 2,0,\left(e^{t}-e^{-t}\right) / 2\right)$ for t in \mathbf{R} lies entirely in Q.
Solution: Substituting $x=\left(e^{t}+e^{-t}\right) / 2, y=0$, and $z=\left(e^{t}-e^{-t}\right) / 2$ into the equation of Q we have

$$
\begin{aligned}
x^{2}-y^{2} / 4-z^{2} & =\left(\left(e^{t}+e^{-t}\right) / 2\right)^{2}-0-\left(\left(e^{t}-e^{-t}\right) / 2\right)^{2} \\
& =\left(e^{2 t}+2+e^{-2 t}\right) / 4-\left(e^{2 t}-2+e^{-2 t}\right) / 4 \\
& =1
\end{aligned}
$$

Therefore all points on the image of α satisfy the equation of Q, so the curve lies entirely in the surface.
II.
A) Find the equation of the plane in \mathbf{R}^{3} containing the point $P=(1,1,1)$ and the line through $Q=(0,1,-1)$ with direction vector $v=(-4,1,2)$.
Solution: The plane contains the vector $(-4,1,2)$ and $P-Q=(1,0,2)$. Hence a normal vector can be found by computing the cross product

$$
N=(-4,1,2) \times(1,0,2)=(2,10,-1)
$$

The plane has equation

$$
N \cdot(x-1, y-1, z-1)=2 x+10 y-z-11=0 .
$$

B) The points $P, Q, Q+v$ from part A are three corners of a parallelogram in the plane you found. Find the fourth corner and the area of that parallelogram.
Solution: The fourth corner is $P+v=(-3,2,3)$. The area of the parallelogram is

$$
\|(-4,1,2) \times(1,0,2)\|=\|(2,10,-1)\|=\sqrt{4+100+1}=\sqrt{105}
$$

C) Two lines with direction vectors $v=(0,1,2)$ and $w=(4,3,2)$ meet at $(0,0,0)$. Find the acute angle between the two lines.
Solution: The angle θ satisfies:

$$
\cos \theta=\frac{v \cdot w}{\|v\|\|w\|}=\frac{7}{\sqrt{5} \sqrt{29}}
$$

Hence $\theta=\cos ^{-1}\left(\frac{7}{\sqrt{5} \sqrt{29}}\right) \doteq 1.31$ radians.
D) Show that if $u=\left(u_{1}, u_{2}, u_{3}\right), v=\left(v_{1}, v_{2}, v_{3}\right)$, and $w=\left(w_{1}, w_{2}, w_{3}\right)$ are general vectors in space, then $u \times(v+w)=u \times v+u \times w$.
Solution: We have, after applying the distributive law and splitting up the vector into a sum of two other vectors:

$$
\begin{aligned}
u \times(v+w)= & \left(u_{1}, u_{2}, u_{3}\right) \times\left(v_{1}+w_{1}, v_{2}+w_{2}, v_{3}+w_{3}\right) \\
= & \left(u_{2}\left(v_{3}+w_{3}\right)-u_{3}\left(v_{2}+w_{2}\right),-\left(u_{1}\left(v_{3}+w_{3}\right)-u_{3}\left(v_{1}+w_{1}\right)\right),\right. \\
& \left.\quad u_{1}\left(v_{2}+w_{2}\right)-u_{2}\left(v_{1}+w_{1}\right)\right) \\
= & \left(u_{2} v_{3}-u_{3} v_{2}+u_{2} w_{3}-u_{3} w_{2},-\left(u_{1} v_{3}-u_{3} v_{1}\right)-\left(u_{1} w_{3}-u_{3} w_{1}\right),\right. \\
& \left.\quad u_{1} v_{2}-u_{2} v_{1}+u_{1} w_{2}-u_{2} w_{1}\right) \\
= & \left(u_{2} v_{3}-u_{3} v_{2},-\left(u_{1} v_{3}-u_{3} v_{1}\right), u_{1} v_{2}-u_{2} v_{1}\right)+ \\
& \quad\left(u_{2} w_{3}-u_{3} w_{2},-\left(u_{1} w_{3}-u_{3} w_{1}\right), u_{1} w_{2}-u_{2} w_{1}\right) \\
= & u \times v+u \times w .
\end{aligned}
$$

III.
A) Sketch the parametric curve $\alpha(t)=(4 \cos (\pi t), 3 \sin (\pi t))$ for $0 \leq t \leq 1$. Show the starting and final points and indicate the direction the curve is traced with an arrow. Solution: This is the top half of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$, starting at $\alpha(0)=(4,0)$ and ending at $\alpha(1)=(-4,0)$. The curve is traced in the counter-clockwise direction.
B) Give a parametrization of the circle with center $(1,3)$ and radius $r=4$ so that one full circuit of the circle is traced out clockwise for $0 \leq t \leq 4 \pi$.
Solution: $\beta(t)=(4 \cos (t / 2)+1,-4 \sin (t / 2)+3)$ is one such parametrization. starting from $\beta(0)=(5,3)$.) Another curve satisfying the given conditions is $\gamma(t)=$ $(4 \sin (t / 2)+1,4 \cos (t / 2)+3)$. This one starts from $\gamma(0)=(1,7)$.
IV. All parts of this problem refer to the parametric curve

$$
\alpha(t)=((1+\cos (t)) \sin (t),-(1+\cos (t)) \cos (t))
$$

called a cardioid (see the Maple plot).
A) Show that for all t, the distance from the origin to the point $\alpha(t)$ is given by $1+\cos (t)$. Solution: The distance is the same as the magnitude $\|\alpha(t)\|$. Computing this, by means of the basic trig identity, we find:

$$
\begin{aligned}
\|\alpha(t)\| & =\sqrt{(1+\cos (t))^{2} \sin ^{2}(t)+(1+\cos (t))^{2} \cos ^{2}(t)} \\
& =\sqrt{(1+\cos (t))^{2}\left(\sin ^{2}(t)+\cos ^{2}(t)\right)} \\
& =\sqrt{(1+\cos (t))^{2}} \\
& =|1+\cos (t)| \\
& =1+\cos (t),
\end{aligned}
$$

since $\cos (t) \geq-1$ for all t, so $1+\cos (t) \geq 0$.
B) At how many different times t in $[0,2 \pi]$ is the y-coordinate of $\alpha(t)$ equal to zero? Find them.
Solution: The y-coordinate is $-(1+\cos (t)) \cos (t)$. This is only $=0$ if either $\cos (t)=-1$ or $\cos (t)=0$. There are three such t values in the given interval: $t=\pi / 2, \pi, 3 \pi / 2$.
C) Find a parametrization of the tangent line to the cardioid at the point $\alpha(\pi / 4)$. Solution: The point on the cardioid is

$$
\alpha(\pi / 4)=((1+\sqrt{2} / 2) \sqrt{2} / 2,-(1+\sqrt{2} / 2) \sqrt{2} / 2)=\left(\frac{1+\sqrt{2}}{2},-\frac{1+\sqrt{2}}{2}\right) .
$$

The tangent vector at a general $\alpha(t)$ is

$$
\alpha^{\prime}(t)=\left(-\sin ^{2}(t)+\cos ^{2}(t)+\cos (t), 2 \sin (t) \cos (t)+\sin (t)\right)
$$

So $\alpha^{\prime}(\pi / 4)=(\sqrt{2} / 2,1+\sqrt{2} / 2)$. The tangent line is

$$
\lambda(u)=\alpha(\pi / 4)+u \alpha^{\prime}(\pi / 4)=\left(\frac{1+\sqrt{2}}{2},-\frac{1+\sqrt{2}}{2}\right)+u\left(\frac{\sqrt{2}}{2}, 1+\frac{\sqrt{2}}{2}\right) .
$$

D) Give a parametrization for any one circle whose interior region completely contains the cardioid. Explain how you determined your center and radius.
Solution: By part A, every point on the cardioid is distance at most 2 from the origin. So if we take any radius $r>2$ and center $(0,0)$, the cardioid will be contained in the interior region of the circle: $\delta(t)=(3 \cos (t), 3 \sin (t))$ gives one such circle if we take $t \in[0,2 \pi]$.

