
Mathematics 241, section 1 – Multivariable Calculus
Solutions for Exam 1

October 1, 2010

I. All parts of this question refer to the three points P = (0, 0, 1), Q = (1, 2,−4), and
R = (1,−1, 0) in R

3.

A) (15) Find the equation of the plane containing P, Q, R.

Solution: The vector from P to Q is Q − P = (1, 2,−5) and the vector from P to R
is R − P = (1,−1,−1). Hence N = (Q − P ) × (R − P ) = (−7,−4,−3) is a normal
vector for the plane we want. Using N and the point P , equation is (−7,−4,−3) ·
(x − 0, y − 0, z − 1) = 0, or

7x + 4y + 3z = 3.

B) (10) Give a parametrization of the line segment from R to Q (in that direction),
including the proper range of t-values.

Solution: The direction vector we want is Q − R = (0, 3,−4). The line segment is

(1,−1, 0) + t(0, 3,−4) = (1,−1 + 3t,−4t) where 0 ≤ t ≤ 1.

C) (10) Which t-value gives the midpoint of the line segment from part B (the point
equidistant from R and Q) in your parametrization?

Solution: Since the line segment is traversed at constant speed in this parametrization
between t = 0 and t = 1, the midpoint will be reached at t = 1

2
. The midpoint is

M = (1, 1

2
,−2). It can be checked that ‖M − Q‖ = ‖M − R‖ = 5

2
.

D) (10) Compute the angle between the vectors ~PQ and ~PR.

Solution: Q − P = (1, 2,−5) and R − P = (1,−1,−1). The angle satisfies

cos(θ) =
(1, 2,−5) · (1,−1,−1)√
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The angle is

θ = cos−1

(
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)

.

II. Let u,v,w be vectors in R
3 with tails at the origin.

A) (10) Show that

w × (u + v) = w × u + w × v.
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Solution: Let u = (u1, u2, u3), v = (v1, v2, v3), and w = (w1, w2, w3). Then

w × (u + v) = (w1, w2, w3) × (u1 + v1, u2 + v2, u3 + v3)

= (w2(u3 + v3) − w3(u2 + v2),

w3(u1 + v1) − w1(u3 + v3), w1(u2 + v2) − w2(u1 + v1))

= (w2u3 − w3u2, w3u1 − w1u3, w1u2 − w2u1)

+ (w2v3 − w3v2, w3v1 − w1v3, w1v2 − w2v1)

= w × u + w × v.

B) (5) Show that if w is in the plane spanned by u and v, then (u× v) · w = 0.

Solution: If w is in the plane spanned by u and v, then there are scalars s, t such that
w = su + tv. Then by another vector identity,

(u × v) · w = (u × v) · (su + tv) = s(u× v) · u + t(u× v) · v.

Since u × v is orthogonal to both u and v, both dot products here are zero. Hence
(u × v) · w = 0.

III. All parts of this question refer to

α(t) = (cos(3t) cos(t), cos(3t) sin(t))

called a 3-leaved rose curve.
A) (15) Starting from t = 0, what is the first t with α(t) = (0, 0)? At how many different

t is α(t) = (0, 0) in the range 0 ≤ t < π?

Solution: Starting from t = 0, the first t with α(t) = (0, 0) is t = π/6. There are three
t in the range 0 ≤ t < π where α(t) = (0, 0): t = π/6, π/2, 5π/6. These all come from
zeroes of the function cos(3t).

B) (15) Find a parametrization of the tangent line to the rose curve at t = π/3.

Solution: We have

α(π/3) = (cos(π) cos(π/3), cos(π) sin(π/3)) =

(
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.

Then by the product rule in each component,

α′(t) = (−3 sin(3t) cos(t) − cos(3t) sin(t),−3 sin(3t) sin(t) + cos(3t) cos(t)).

Hence

α′(π/3) =

(

0 +

√
3

2
, 0 − 1

2

)

=

(√
3

2
,−1

2

)

.

2



The tangent line is
(
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)

+ s
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)

, s ∈ R.

C) (10) Give a parametrization of a circle surrounding the “leaf” of α(t) in quadrants I
and IV, but not completely enclosing either of the other leaves. (Any circle that does
that is OK.)

Solution: If we place the center at (1, 0), then to enclose the “leaf” in quadrants I and
IV, but not the other two “leaves,” we can take a radius greater than or equal to 1,
but strictly less than the distance from (1, 0) to the point α(π/3), which is

√
3. Note

that r = 1 is in that range. Something like

β(t) = (1 + cos(t), sin(t))

is a reasonable answer.

Extra Credit (10) Let β(t) be a parametric curve in R
3. Suppose that β(t) · β(t) = 1

(dot product) for all t. Show that β′(t) is orthogonal to β(t) for all t.

Solution: By the product formula for derivatives, it follows that

(β(t) · γ(t))′ = β′(t)γ(t) + β(t) · γ′(t)

for any vector valued functions β and γ. If γ = β and β(t) · β(t) is constant, then this
shows

2β(t) · β′(t) = 0

for all t. This shows that β(t) and β′(t) are orthogonal for all t.
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