Mathematics 241, section 1 - Multivariable Calculus

Solutions for Exam 1
October 1, 2010
I. All parts of this question refer to the three points $P=(0,0,1), Q=(1,2,-4)$, and $R=(1,-1,0)$ in \mathbf{R}^{3}.
A) (15) Find the equation of the plane containing P, Q, R.

Solution: The vector from P to Q is $Q-P=(1,2,-5)$ and the vector from P to R is $R-P=(1,-1,-1)$. Hence $N=(Q-P) \times(R-P)=(-7,-4,-3)$ is a normal vector for the plane we want. Using N and the point P, equation is $(-7,-4,-3)$. $(x-0, y-0, z-1)=0$, or

$$
7 x+4 y+3 z=3
$$

B) (10) Give a parametrization of the line segment from R to Q (in that direction), including the proper range of t-values.

Solution: The direction vector we want is $Q-R=(0,3,-4)$. The line segment is

$$
(1,-1,0)+t(0,3,-4)=(1,-1+3 t,-4 t) \quad \text { where } 0 \leq t \leq 1
$$

C) (10) Which t-value gives the midpoint of the line segment from part B (the point equidistant from R and Q) in your parametrization?

Solution: Since the line segment is traversed at constant speed in this parametrization between $t=0$ and $t=1$, the midpoint will be reached at $t=\frac{1}{2}$. The midpoint is $M=\left(1, \frac{1}{2},-2\right)$. It can be checked that $\|M-Q\|=\|M-R\|=\frac{5}{2}$.
D) (10) Compute the angle between the vectors $\overrightarrow{P Q}$ and $\overrightarrow{P R}$.

Solution: $Q-P=(1,2,-5)$ and $R-P=(1,-1,-1)$. The angle satisfies

$$
\cos (\theta)=\frac{(1,2,-5) \cdot(1,-1,-1)}{\sqrt{30} \sqrt{3}}=\frac{4}{3 \sqrt{10}}=\frac{4 \sqrt{10}}{30}
$$

The angle is

$$
\theta=\cos ^{-1}\left(\frac{4 \sqrt{10}}{30}\right)
$$

II. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors in \mathbf{R}^{3} with tails at the origin.
A) (10) Show that

$$
\mathbf{w} \times(\mathbf{u}+\mathbf{v})=\mathbf{w} \times \mathbf{u}+\mathbf{w} \times \mathbf{v}
$$

Solution: Let $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right), \mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$, and $\mathbf{w}=\left(w_{1}, w_{2}, w_{3}\right)$. Then

$$
\begin{aligned}
\mathbf{w} \times(\mathbf{u}+\mathbf{v})= & \left(w_{1}, w_{2}, w_{3}\right) \times\left(u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right) \\
= & \left(w_{2}\left(u_{3}+v_{3}\right)-w_{3}\left(u_{2}+v_{2}\right),\right. \\
& \left.w_{3}\left(u_{1}+v_{1}\right)-w_{1}\left(u_{3}+v_{3}\right), w_{1}\left(u_{2}+v_{2}\right)-w_{2}\left(u_{1}+v_{1}\right)\right) \\
= & \left(w_{2} u_{3}-w_{3} u_{2}, w_{3} u_{1}-w_{1} u_{3}, w_{1} u_{2}-w_{2} u_{1}\right) \\
& \quad+\left(w_{2} v_{3}-w_{3} v_{2}, w_{3} v_{1}-w_{1} v_{3}, w_{1} v_{2}-w_{2} v_{1}\right) \\
= & \mathbf{w} \times \mathbf{u}+\mathbf{w} \times \mathbf{v} .
\end{aligned}
$$

B) (5) Show that if \mathbf{w} is in the plane spanned by \mathbf{u} and \mathbf{v}, then $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}=0$.

Solution: If \mathbf{w} is in the plane spanned by \mathbf{u} and \mathbf{v}, then there are scalars s, t such that $\mathbf{w}=s \mathbf{u}+t \mathbf{v}$. Then by another vector identity,

$$
(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}=(\mathbf{u} \times \mathbf{v}) \cdot(s \mathbf{u}+t \mathbf{v})=s(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u}+t(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v} .
$$

Since $\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v}, both dot products here are zero. Hence $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}=0$.
III. All parts of this question refer to

$$
\alpha(t)=(\cos (3 t) \cos (t), \cos (3 t) \sin (t))
$$

called a 3-leaved rose curve.
A) (15) Starting from $t=0$, what is the first t with $\alpha(t)=(0,0)$? At how many different t is $\alpha(t)=(0,0)$ in the range $0 \leq t<\pi$?
Solution: Starting from $t=0$, the first t with $\alpha(t)=(0,0)$ is $t=\pi / 6$. There are three t in the range $0 \leq t<\pi$ where $\alpha(t)=(0,0): t=\pi / 6, \pi / 2,5 \pi / 6$. These all come from zeroes of the function $\cos (3 t)$.
B) (15) Find a parametrization of the tangent line to the rose curve at $t=\pi / 3$.

Solution: We have

$$
\alpha(\pi / 3)=(\cos (\pi) \cos (\pi / 3), \cos (\pi) \sin (\pi / 3))=\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right) .
$$

Then by the product rule in each component,

$$
\alpha^{\prime}(t)=(-3 \sin (3 t) \cos (t)-\cos (3 t) \sin (t),-3 \sin (3 t) \sin (t)+\cos (3 t) \cos (t)) .
$$

Hence

$$
\alpha^{\prime}(\pi / 3)=\left(0+\frac{\sqrt{3}}{2}, 0-\frac{1}{2}\right)=\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right) .
$$

The tangent line is

$$
\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)+s\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right), s \in \mathbf{R} .
$$

C) (10) Give a parametrization of a circle surrounding the "leaf" of $\alpha(t)$ in quadrants I and IV, but not completely enclosing either of the other leaves. (Any circle that does that is OK.)

Solution: If we place the center at $(1,0)$, then to enclose the "leaf" in quadrants I and IV, but not the other two "leaves," we can take a radius greater than or equal to 1 , but strictly less than the distance from $(1,0)$ to the point $\alpha(\pi / 3)$, which is $\sqrt{3}$. Note that $r=1$ is in that range. Something like

$$
\beta(t)=(1+\cos (t), \sin (t))
$$

is a reasonable answer.
Extra Credit (10) Let $\beta(t)$ be a parametric curve in \mathbf{R}^{3}. Suppose that $\beta(t) \cdot \beta(t)=1$ (dot product) for all t. Show that $\beta^{\prime}(t)$ is orthogonal to $\beta(t)$ for all t.

Solution: By the product formula for derivatives, it follows that

$$
(\beta(t) \cdot \gamma(t))^{\prime}=\beta^{\prime}(t) \gamma(t)+\beta(t) \cdot \gamma^{\prime}(t)
$$

for any vector valued functions β and γ. If $\gamma=\beta$ and $\beta(t) \cdot \beta(t)$ is constant, then this shows

$$
2 \beta(t) \cdot \beta^{\prime}(t)=0
$$

for all t. This shows that $\beta(t)$ and $\beta^{\prime}(t)$ are orthogonal for all t.

