
Mathematics 241, section 1 – Multivariable Calculus
Solutions for Final Examination – December 14, 2010

I. In this problem,
P = (1,−1, 3), Q = (0, 3, 1), and R = (−4, 1, 2).

A) (10) Find the equation of the plane containing the points P,Q,R in R
3.

Solution: A normal vector is

N = ((−4, 1, 2) − (1,−1, 3)) × ((0, 3, 1) − (1,−1, 3))

= (−5, 2,−1) × (−1, 4,−2) = (0,−9,−18)

Since any scalar multiple of N is also normal to the plane, we can also use N = (0, 1, 2), and
then the equation becomes

(0, 1, 2) · (x − 1, y + 1, z − 3) = 0

or
y + 2z − 5 = 0.

B) (10) At what point does the line containing P,Q meet the xy-plane?

Solution: The line containing P and Q can be parametrized as

α(t) = (1,−1, 3) + t(−1, 4,−2) = (1 − t,−1 + 4t, 3 − 2t).

This meets the xy plane when z = 0 so 3 − 2t = 0, or t = 3/2. The corresponding point is

α(3/2) = (−1/2, 5, 0).

1. C) (5) If v is the vector from P to Q and w is the vector from P to R, at what angle do v,w
meet?

Solution: The angle is θ satisfying

cos θ =
v ·w

‖v‖‖w‖ =
15√

30
√

21
=

5√
70

.

This says

θ = cos−1

(

5√
70

)

.

II. Suppose you follow a flow line of the vector field ∇f for f(x, y) in the xy-plane.
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A) (5) As you traverse the flow line in the increasing t-direction, is the corresponding path on
the graph z = f(x, y) going uphill or downhill? Explain.

Solution: Uphill – the gradient vector always points in the direction of maximum rate of
increase.

B) (5) What does the vector field ∇f look like near a local maximum of f? Near a local minimum
of f? Make rough sketches by hand to illustrate.

Solution: Near a local maximum, all the arrows from the vector field ∇f will be pointing
“in” – the local maximum is a sink of the vector field. Near a local minimum, all the arrows
will be pointing “out” – the local minimum is a source of the vector field.

III. All parts of this problem refer to f(x, y) = (x − 1)2 − y2.

A) (5) Sketch the contours of f(x, y) for the values c = −1, 0, 1.

Solution: The contours for c = ±1 are hyperbolas with asymptotes along the lines y = x − 1
and y = −x + 1. The c = −1 contour opens up and down, and the c = 1 contour opens left
and right. The c = 0 contour is the union of the two asymptotes.

B) (10) At the point (1, 2), in which direction is f increasing the fastest? Express your answer
as a unit direction vector.

Solution: The gradient vector ∇f(1, 2) points in this direction. ∇f(x, y) = (2(x − 1),−2y)
so we have ∇f(1, 2) = (0,−4). The unit vector in this direction is u = (0,−1).

IV. (20) After an ill-fated “three hour tour” goes awry, you are stranded on a island at the point
with coordinates (1, 1). Fortunately, you have a radio transmitter with you. Unfortunately, it
has a limited range – its signal can only be received at distances less than or equal to 2/3 from
its position. You know that there is a Coast Guard patrol boat that makes a circuit of the path
x2 + y2 = 4 every day, and they always carry a radio receiver and listen for transmissions. Will the
patrol boat ever get within 2/3 of your position and receive your signal? (Note: Minimizing the
distance from a point (a, b) is the same as minimizing the function f(x, y) = ‖(x, y) − (a, b)‖2.)

Solution: One solution of this problem uses the method of Lagrange multipliers to find the point
on the path of the patrol boat closest to (1, 1). If the distance from the closest point to (1, 1) is
less than 2/3, then the signal will be heard and you will be rescued. Using the hint, we want to
minimize

f(x, y) = ‖(x, y) − (1, 1)‖2 = (x − 1)2 + (y − 1)2.
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The constraint curve is g(x, y) = x2 + y2 − 4 = 0. The Lagrange equations are

2(x − 1) = 2λx

2(y − 1) = 2λy

x2 + y2 − 4 = 0.

We can eliminate λ between the first two equations by the usual method (multiply the first by y
and the second by x, then equate the left sides), yielding

y(x − 1) = x(y − 1) ⇒ y = x.

In the constraint equation, this gives two points (
√

2,
√

2) and (−
√

2,−
√

2). The values of f at
these points are

f(
√

2,
√

2) = 2(
√

2 − 1)2 = 6 − 4
√

2

f(−
√

2,−
√

2) = 2(−
√

2 − 1)2 = 6 + 4
√

2.

Since 6 − 4
√

2
.
= .343 < (2/3)2

.
= .444, your radio signal will be received by the patrol boat and

you will be rescued!

Notes:

1. That the closest point to (1, 1) on the circle x2 + y2 = 4 is the point (
√

2,
√

2) can also be
seen by elementary geometry. I gave full credit for solutions that showed this without using
Lagrange multipliers.

2. The problem has a number of other correct solutions as well. Another way that many of you
thought of is to find whether the circle (x− 1)2 + (y − 1)2 = 4/9 (the boundary of the region
in which the signal from your receiver can be heard) intersects the path of the patrol boat
x2 + y2 = 4. This can be determined by elementary algebra – the two circles intersect at
approximately (1.122, 1.655) and (1.655, 1.122), so there is an arc on the path of the patrol
boat consisting of points from which the signal can be heard.

V. Let f(x, y) = ye−x2
−2y2

.

A) (10) Find the equation of the tangent plane to the graph z = f(x, y) at the point (1, 1, e−3).

Solution: We have fx = −2xye−x2
−2y2

and fy = e−x2
−2y2

(1 − 4y2). So the tangent plane is

z = f(1, 1) + fx(1, 1)(x − 1) + fy(1, 1)(y − 1)

= e−3 − 2e−3(x − 1) − 3e−3(y − 1).

B) (10) Find all the critical points of f(x, y).
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Solution: We have fx, fy from part A. Setting those equal to zero, we obtain from fx = 0
that x = 0 or y = 0. However fy = 0 implies that y = ±1/2. So there are only two critical
points (0,±1/2).

C) (20) Use the Second Derivative Test to determine the type of each critical point you found in
part B.

Solution: We continue to compute the second-order partial derivatives.

fxx = y(−2 + 4x2)e−x2
−2y2

fxy = x(−2 + 8y2)e−x2
−2y2

fyy = (−12y + 16y3)e−x2
−2y2

At (0, 1/2),

A = fxx(0, 1/2) = −e−1/2

B = fxy(0, 1/2) = 0

C = fyy(0, 1/2) = −4e−1/2.

Hence AC − B2 > 0 and A < 0, so f has a local maximum at (0, 1/2).

Similarly, at (0,−1/2),

A = fxx(0,−1/2) = +e−1/2

B = fxy(0,−1/2) = 0

C = fyy(0,−1/2) = +4e−1/2.

Hence AC − B2 > 0 and A > 0, so f has a local minimum at (0,−1/2).

VI. The region R in R
2 is the set of points

R = {(x, y) ∈ R
2 | x2 + y2 ≤ 25, y ≥ x, x ≥ 0, and y ≤ 4}

and let f(x, y) be some continuous function defined on R.

A) (5) Sketch R.

Solution: This is the region inside the circle of radius 5 centered at (0, 0), above the line
y = x, to the right of the y-axis, but below the line y = 4:
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The line y = 4 intersects the circle at (3, 4), and the line y = x intersects at (5
√

2/2, 5
√

2/2).
Note that this has y = 5

√
2/2

.
= 3.54 < 4. So the boundary of the region we want includes a

small arc of the circle x2 + y2 = 25 between the points (3, 4) and (5
√

2/2, 5
√

2/2).

B) (10) Set up the limits of integration of iterated integral(s) to compute
∫ ∫

R f(x, y) dA inte-
grating with respect to x first, then y.

Solution: This way, we must split the interval of y-values at y = 5
√

2/2, where the line y = x
crosses the circle:

∫

5
√

2/2

0

∫ y

0

f(x, y) dx dy +

∫

4

5
√

2/2

∫

√
25−y2

0

f(x, y) dx dy.

C) (10) Now reverse the order of the variables and set up iterated integral(s) to compute the
same integral, but integrating with respect to y first, then x.

Solution: This one also must be split at x = 3 where the line y = 4 crosses the circle.

∫

3

0

∫

4

x
f(x, y) dy dx +

∫

5
√

2/2

3

∫

√

25−x2

x
f(x, y) dy dx.

VII. (20) The metal making up a thin plate with the shape of the region in R
2 with x2 + y2 ≤ 4

has density δ(x, y) = 6 + y at all points. Determine the coordinates of its center of mass.
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Solution: Since the plate has the shape of a circular disk, we will set up all the integrals in polar
coordinates. First the total mass is

M =

∫ ∫

R
6 + y dA =

∫

2π

0

∫

2

0

(6 + r sin θ)r dr dθ

=

∫

2π

0

12 +
8

3
sin θ dθ

= 24π.

We can see x = 0 since the plate and the density function are symmetric under x 7→ −x. Finally

y =
1

24π

∫

2π

0

∫

2

0

r sin θ(6 + r sin θ)r dr dθ

=
1

24π

∫

2π

0

16 sin θ + 4 sin2 θ dθ

=
4π

24π

=
1

6
.

VIII. Consider the following triple integral:

∫

3

−3

∫

√

9−x2

−

√

9−x2

∫

√
9−x2

−y2

−

√
9−x2

−y2

1 + x dz dy dx

A) (5) Describe the solid over which you are integrating here.

Solution: It is the solid sphere of radius 3 centered at (0, 0, 0) in R
3.

B) (20) Using any convenient coordinate system, evaluate this integral.

Solution: Spherical coordinates are probably the best choice:
∫

2π

0

∫ π

0

∫

3

0

(1 + ρ sin φ cos θ)ρ2 sin φ dρ dφ dθ

=

∫

2π

0

∫ π

0

9 sin φ +
81

4
sin2 φ cos θ dφ dθ

=

∫

2π

0

18 +
81π

8
cos θ dθ

= 36π.

This can also be done relatively easily in cylindrical coordinates, of course:

∫

2π

0

∫

3

0

∫

√

9−r2

−

√

9−r2

(1 + r cos θ)r dz dr dθ.
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IX.

A) (10) State Green’s Theorem.

Solution: If α is a differentiable simple, closed, positively oriented curve enclosing a region R
and F (x, y) = (u(x, y), v(x, y)) is a vector field whose component functions u, v have contin-
uous first order partial derivatives on the region R, then

∫

α
F · T ds =

∫ ∫

R
vx − uy dA.

B) (10) Let F(x, y) = (x − y2, x2 + y). Verify that Green’s Theorem holds for the region D =
{(x, y) ∈ R

2 : x2 + y2 ≤ 9} by computing both sides of the equation in the theorem and
showing that they are equal.

Solution: The line integral can be computed using α(t) = (3 cos(t), 3 sin(t)). This gives:

∫

α
F · T ds =

∫

2π

0

(3 cos(t) − 9 sin2(t), 9 cos2(t) + 3 sin(t)) · (−3 sin(t), 3 cos(t)) dt

=

∫

2π

0

27 sin3 t + 27 cos3 t dt

= 0.

The double integral can be computed using polar coordinates:

∫ ∫

R
2x + 2y dA =

∫

2π

0

∫

3

0

2r2(cos θ + sin θ) dr dθ

=

∫

2π

0

18(cos θ + sin θ) dθ

= 0.

Extra Credit

A function f(x, y) is said to be harmonic on an open set U in R
2 if it satisfies the equation

fxx + fyy = 0

at all points in U . (Here fx, fy, fxx, fyy are the partial derivatives of the harmonic function f with
respect to the indicated variables.)

A) (5) How does a nondegenerate critical point of a harmonic function fit into our classification?
Is it a local maximum, local minimum, or a saddle point? Explain how you can tell from the
Second Derivative Test.
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Solution: Since fyy = −fxx at all critical points,

fxxfyy − (fxy)
2 = −(fxx)

2 − (fxy)
2 < 0

at every nondegenerate critical point. They are all saddle points(!)

B) (5) If f is harmonic, what is true about the total flux of the vector field

F(x, y) = ∇f(x, y)

across any simple closed curve in U? Explain.

Solution: The divergence of ∇f = (fx, fy) is

(fx)x + (fy)y = fxx + fyy = 0.

Hence
∫

α
F · N ds =

∫ ∫

R
fxx + fyy dA = 0

by Green’s Theorem.
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