Mathematics 241, section 1 - Multivariable Calculus
Solutions for Final Examination - December 14, 2010
I. In this problem,

$$
P=(1,-1,3), Q=(0,3,1), \text { and } R=(-4,1,2) .
$$

A) (10) Find the equation of the plane containing the points P, Q, R in \mathbf{R}^{3}.

Solution: A normal vector is

$$
\begin{aligned}
N & =((-4,1,2)-(1,-1,3)) \times((0,3,1)-(1,-1,3)) \\
& =(-5,2,-1) \times(-1,4,-2)=(0,-9,-18)
\end{aligned}
$$

Since any scalar multiple of N is also normal to the plane, we can also use $N=(0,1,2)$, and then the equation becomes

$$
(0,1,2) \cdot(x-1, y+1, z-3)=0
$$

or

$$
y+2 z-5=0 .
$$

B) (10) At what point does the line containing P, Q meet the $x y$-plane?

Solution: The line containing P and Q can be parametrized as

$$
\alpha(t)=(1,-1,3)+t(-1,4,-2)=(1-t,-1+4 t, 3-2 t) .
$$

This meets the $x y$ plane when $z=0$ so $3-2 t=0$, or $t=3 / 2$. The corresponding point is

$$
\alpha(3 / 2)=(-1 / 2,5,0)
$$

1. C) (5) If \mathbf{v} is the vector from P to Q and \mathbf{w} is the vector from P to R, at what angle do \mathbf{v}, \mathbf{w} meet?

Solution: The angle is θ satisfying

$$
\cos \theta=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}=\frac{15}{\sqrt{30} \sqrt{21}}=\frac{5}{\sqrt{70}}
$$

This says

$$
\theta=\cos ^{-1}\left(\frac{5}{\sqrt{70}}\right)
$$

II. Suppose you follow a flow line of the vector field ∇f for $f(x, y)$ in the $x y$-plane.
A) (5) As you traverse the flow line in the increasing t-direction, is the corresponding path on the graph $z=f(x, y)$ going uphill or downhill? Explain.

Solution: Uphill - the gradient vector always points in the direction of maximum rate of increase.
B) (5) What does the vector field ∇f look like near a local maximum of f ? Near a local minimum of f ? Make rough sketches by hand to illustrate.

Solution: Near a local maximum, all the arrows from the vector field ∇f will be pointing "in" - the local maximum is a sink of the vector field. Near a local minimum, all the arrows will be pointing "out" - the local minimum is a source of the vector field.
III. All parts of this problem refer to $f(x, y)=(x-1)^{2}-y^{2}$.
A) (5) Sketch the contours of $f(x, y)$ for the values $c=-1,0,1$.

Solution: The contours for $c= \pm 1$ are hyperbolas with asymptotes along the lines $y=x-1$ and $y=-x+1$. The $c=-1$ contour opens up and down, and the $c=1$ contour opens left and right. The $c=0$ contour is the union of the two asymptotes.
B) (10) At the point $(1,2)$, in which direction is f increasing the fastest? Express your answer as a unit direction vector.

Solution: The gradient vector $\nabla f(1,2)$ points in this direction. $\nabla f(x, y)=(2(x-1),-2 y)$ so we have $\nabla f(1,2)=(0,-4)$. The unit vector in this direction is $u=(0,-1)$.
IV. (20) After an ill-fated "three hour tour" goes awry, you are stranded on a island at the point with coordinates $(1,1)$. Fortunately, you have a radio transmitter with you. Unfortunately, it has a limited range - its signal can only be received at distances less than or equal to $2 / 3$ from its position. You know that there is a Coast Guard patrol boat that makes a circuit of the path $x^{2}+y^{2}=4$ every day, and they always carry a radio receiver and listen for transmissions. Will the patrol boat ever get within $2 / 3$ of your position and receive your signal? (Note: Minimizing the distance from a point (a, b) is the same as minimizing the function $f(x, y)=\|(x, y)-(a, b)\|^{2}$.)

Solution: One solution of this problem uses the method of Lagrange multipliers to find the point on the path of the patrol boat closest to $(1,1)$. If the distance from the closest point to $(1,1)$ is less than $2 / 3$, then the signal will be heard and you will be rescued. Using the hint, we want to minimize

$$
f(x, y)=\|(x, y)-(1,1)\|^{2}=(x-1)^{2}+(y-1)^{2} .
$$

The constraint curve is $g(x, y)=x^{2}+y^{2}-4=0$. The Lagrange equations are

$$
\begin{aligned}
2(x-1) & =2 \lambda x \\
2(y-1) & =2 \lambda y \\
x^{2}+y^{2}-4 & =0 .
\end{aligned}
$$

We can eliminate λ between the first two equations by the usual method (multiply the first by y and the second by x, then equate the left sides), yielding

$$
y(x-1)=x(y-1) \Rightarrow y=x .
$$

In the constraint equation, this gives two points $(\sqrt{2}, \sqrt{2})$ and $(-\sqrt{2},-\sqrt{2})$. The values of f at these points are

$$
\begin{aligned}
f(\sqrt{2}, \sqrt{2}) & =2(\sqrt{2}-1)^{2}=6-4 \sqrt{2} \\
f(-\sqrt{2},-\sqrt{2}) & =2(-\sqrt{2}-1)^{2}=6+4 \sqrt{2} .
\end{aligned}
$$

Since $6-4 \sqrt{2} \doteq .343<(2 / 3)^{2} \doteq .444$, your radio signal will be received by the patrol boat and you will be rescued!

Notes:

1. That the closest point to $(1,1)$ on the circle $x^{2}+y^{2}=4$ is the point $(\sqrt{2}, \sqrt{2})$ can also be seen by elementary geometry. I gave full credit for solutions that showed this without using Lagrange multipliers.
2. The problem has a number of other correct solutions as well. Another way that many of you thought of is to find whether the circle $(x-1)^{2}+(y-1)^{2}=4 / 9$ (the boundary of the region in which the signal from your receiver can be heard) intersects the path of the patrol boat $x^{2}+y^{2}=4$. This can be determined by elementary algebra - the two circles intersect at approximately $(1.122,1.655)$ and $(1.655,1.122)$, so there is an arc on the path of the patrol boat consisting of points from which the signal can be heard.
V. Let $f(x, y)=y e^{-x^{2}-2 y^{2}}$.
A) (10) Find the equation of the tangent plane to the graph $z=f(x, y)$ at the point $\left(1,1, e^{-3}\right)$.

Solution: We have $f_{x}=-2 x y e^{-x^{2}-2 y^{2}}$ and $f_{y}=e^{-x^{2}-2 y^{2}}\left(1-4 y^{2}\right)$. So the tangent plane is

$$
\begin{aligned}
z & =f(1,1)+f_{x}(1,1)(x-1)+f_{y}(1,1)(y-1) \\
& =e^{-3}-2 e^{-3}(x-1)-3 e^{-3}(y-1) .
\end{aligned}
$$

B) (10) Find all the critical points of $f(x, y)$.

Solution: We have f_{x}, f_{y} from part A. Setting those equal to zero, we obtain from $f_{x}=0$ that $x=0$ or $y=0$. However $f_{y}=0$ implies that $y= \pm 1 / 2$. So there are only two critical points ($0, \pm 1 / 2$).
C) (20) Use the Second Derivative Test to determine the type of each critical point you found in part B.

Solution: We continue to compute the second-order partial derivatives.

$$
\begin{aligned}
f_{x x} & =y\left(-2+4 x^{2}\right) e^{-x^{2}-2 y^{2}} \\
f_{x y} & =x\left(-2+8 y^{2}\right) e^{-x^{2}-2 y^{2}} \\
f_{y y} & =\left(-12 y+16 y^{3}\right) e^{-x^{2}-2 y^{2}}
\end{aligned}
$$

At $(0,1 / 2)$,

$$
\begin{aligned}
& A=f_{x x}(0,1 / 2)=-e^{-1 / 2} \\
& B=f_{x y}(0,1 / 2)=0 \\
& C=f_{y y}(0,1 / 2)=-4 e^{-1 / 2} .
\end{aligned}
$$

Hence $A C-B^{2}>0$ and $A<0$, so f has a local maximum at $(0,1 / 2)$.
Similarly, at ($0,-1 / 2$),

$$
\begin{aligned}
& A=f_{x x}(0,-1 / 2)=+e^{-1 / 2} \\
& B=f_{x y}(0,-1 / 2)=0 \\
& C=f_{y y}(0,-1 / 2)=+4 e^{-1 / 2} .
\end{aligned}
$$

Hence $A C-B^{2}>0$ and $A>0$, so f has a local minimum at $(0,-1 / 2)$.
VI. The region R in \mathbf{R}^{2} is the set of points

$$
R=\left\{(x, y) \in \mathbf{R}^{2} \mid x^{2}+y^{2} \leq 25, y \geq x, x \geq 0, \text { and } y \leq 4\right\}
$$

and let $f(x, y)$ be some continuous function defined on R.
A) (5) Sketch R.

Solution: This is the region inside the circle of radius 5 centered at $(0,0)$, above the line $y=x$, to the right of the y-axis, but below the line $y=4$:

The line $y=4$ intersects the circle at $(3,4)$, and the line $y=x$ intersects at $(5 \sqrt{2} / 2,5 \sqrt{2} / 2)$. Note that this has $y=5 \sqrt{2} / 2 \doteq 3.54<4$. So the boundary of the region we want includes a small arc of the circle $x^{2}+y^{2}=25$ between the points $(3,4)$ and $(5 \sqrt{2} / 2,5 \sqrt{2} / 2)$.
B) (10) Set up the limits of integration of iterated integral(s) to compute $\iint_{R} f(x, y) d A$ integrating with respect to x first, then y.
Solution: This way, we must split the interval of y-values at $y=5 \sqrt{2} / 2$, where the line $y=x$ crosses the circle:

$$
\int_{0}^{5 \sqrt{2} / 2} \int_{0}^{y} f(x, y) d x d y+\int_{5 \sqrt{2} / 2}^{4} \int_{0}^{\sqrt{25-y^{2}}} f(x, y) d x d y
$$

C) (10) Now reverse the order of the variables and set up iterated integral(s) to compute the same integral, but integrating with respect to y first, then x.

Solution: This one also must be split at $x=3$ where the line $y=4$ crosses the circle.

$$
\int_{0}^{3} \int_{x}^{4} f(x, y) d y d x+\int_{3}^{5 \sqrt{2} / 2} \int_{x}^{\sqrt{25-x^{2}}} f(x, y) d y d x
$$

VII. (20) The metal making up a thin plate with the shape of the region in \mathbf{R}^{2} with $x^{2}+y^{2} \leq 4$ has density $\delta(x, y)=6+y$ at all points. Determine the coordinates of its center of mass.

Solution: Since the plate has the shape of a circular disk, we will set up all the integrals in polar coordinates. First the total mass is

$$
\begin{aligned}
M=\iint_{R} 6+y d A & =\int_{0}^{2 \pi} \int_{0}^{2}(6+r \sin \theta) r d r d \theta \\
& =\int_{0}^{2 \pi} 12+\frac{8}{3} \sin \theta d \theta \\
& =24 \pi
\end{aligned}
$$

We can see $\bar{x}=0$ since the plate and the density function are symmetric under $x \mapsto-x$. Finally

$$
\begin{aligned}
\bar{y} & =\frac{1}{24 \pi} \int_{0}^{2 \pi} \int_{0}^{2} r \sin \theta(6+r \sin \theta) r d r d \theta \\
& =\frac{1}{24 \pi} \int_{0}^{2 \pi} 16 \sin \theta+4 \sin ^{2} \theta d \theta \\
& =\frac{4 \pi}{24 \pi} \\
& =\frac{1}{6} .
\end{aligned}
$$

VIII. Consider the following triple integral:

$$
\int_{-3}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} \int_{-\sqrt{9-x^{2}-y^{2}}}^{\sqrt{9-x^{2}-y^{2}}} 1+x d z d y d x
$$

A) (5) Describe the solid over which you are integrating here.

Solution: It is the solid sphere of radius 3 centered at $(0,0,0)$ in \mathbf{R}^{3}.
B) (20) Using any convenient coordinate system, evaluate this integral.

Solution: Spherical coordinates are probably the best choice:

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{3}(1+\rho \sin \phi \cos \theta) \rho^{2} \sin \phi d \rho d \phi d \theta \\
= & \int_{0}^{2 \pi} \int_{0}^{\pi} 9 \sin \phi+\frac{81}{4} \sin ^{2} \phi \cos \theta d \phi d \theta \\
= & \int_{0}^{2 \pi} 18+\frac{81 \pi}{8} \cos \theta d \theta \\
= & 36 \pi .
\end{aligned}
$$

This can also be done relatively easily in cylindrical coordinates, of course:

$$
\int_{0}^{2 \pi} \int_{0}^{3} \int_{-\sqrt{9-r^{2}}}^{\sqrt{9-r^{2}}}(1+r \cos \theta) r d z d r d \theta
$$

IX.
A) (10) State Green's Theorem.

Solution: If α is a differentiable simple, closed, positively oriented curve enclosing a region R and $F(x, y)=(u(x, y), v(x, y))$ is a vector field whose component functions u, v have continuous first order partial derivatives on the region R, then

$$
\int_{\alpha} F \cdot T d s=\iint_{R} v_{x}-u_{y} d A .
$$

B) (10) Let $\mathbf{F}(x, y)=\left(x-y^{2}, x^{2}+y\right)$. Verify that Green's Theorem holds for the region $D=$ $\left\{(x, y) \in \mathbf{R}^{2}: x^{2}+y^{2} \leq 9\right\}$ by computing both sides of the equation in the theorem and showing that they are equal.

Solution: The line integral can be computed using $\alpha(t)=(3 \cos (t), 3 \sin (t))$. This gives:

$$
\begin{aligned}
\int_{\alpha} F \cdot T d s & =\int_{0}^{2 \pi}\left(3 \cos (t)-9 \sin ^{2}(t), 9 \cos ^{2}(t)+3 \sin (t)\right) \cdot(-3 \sin (t), 3 \cos (t)) d t \\
& =\int_{0}^{2 \pi} 27 \sin ^{3} t+27 \cos ^{3} t d t \\
& =0
\end{aligned}
$$

The double integral can be computed using polar coordinates:

$$
\begin{aligned}
\iint_{R} 2 x+2 y d A & =\int_{0}^{2 \pi} \int_{0}^{3} 2 r^{2}(\cos \theta+\sin \theta) d r d \theta \\
& =\int_{0}^{2 \pi} 18(\cos \theta+\sin \theta) d \theta \\
& =0
\end{aligned}
$$

Extra Credit

A function $f(x, y)$ is said to be harmonic on an open set U in \mathbf{R}^{2} if it satisfies the equation

$$
f_{x x}+f_{y y}=0
$$

at all points in U. (Here $f_{x}, f_{y}, f_{x x}, f_{y y}$ are the partial derivatives of the harmonic function f with respect to the indicated variables.)
A) (5) How does a nondegenerate critical point of a harmonic function fit into our classification? Is it a local maximum, local minimum, or a saddle point? Explain how you can tell from the Second Derivative Test.

Solution: Since $f_{y y}=-f_{x x}$ at all critical points,

$$
f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=-\left(f_{x x}\right)^{2}-\left(f_{x y}\right)^{2}<0
$$

at every nondegenerate critical point. They are all saddle points(!)
B) (5) If f is harmonic, what is true about the total flux of the vector field

$$
\mathbf{F}(x, y)=\nabla f(x, y)
$$

across any simple closed curve in U ? Explain.
Solution: The divergence of $\nabla f=\left(f_{x}, f_{y}\right)$ is

$$
\left(f_{x}\right)_{x}+\left(f_{y}\right)_{y}=f_{x x}+f_{y y}=0
$$

Hence

$$
\int_{\alpha} F \cdot N d s=\iint_{R} f_{x x}+f_{y y} d A=0
$$

by Green's Theorem.

