Mathematics 241 – Multivariable Calculus Solutions for Midterm Exam 1 September 28, 2007

I.

A) A direction vector for the line is Q - P = (1, 2, -4) - (0, 0, 1) = (1, 2, -5). Parametric equations come from P + t(Q - P) = (0, 0, 1) + t(1, 2, -5), so

$$x = t$$

$$y = 2t$$

$$z = 1 - 5t.$$

The interval of t-values giving the line segment from P to Q for these parametric equations is $0 \le t \le 1$ (note that t = 0 gives (x, y, z) = (0, 0, 1) which is P, and t = 1 gives (1, 2, -4), which is Q). The point equidistant from P and Q along the line is the midpoint of the line segment, which is the point with $t = \frac{1}{2}$. This can be seen in several different ways. The easiest is just to notice that the parametric equations correspond to motion with constant speed along the line segment, so $t = \frac{1}{2}$ will take us exactly half the distance from P to Q.

B. Let v = Q - P = (1, 2, -5) as above. Also let w = R - P = (1, -1, 0) - (0, 0, 1) = (1, -1, -1). Then a normal vector for the desired plane is

$$\mathbf{N} = (1, 2, -5) \times (1, -1, -1) = (-2 - 5, -(-1 + 5), -1 - 2) = (-7, -4, -3).$$

The Cartesian equation of the plane is

$$0 = \mathbf{N} \cdot (x - 0, y - 0, z - 1) = (-7, -4, -3) \cdot (x, y, z - 1) = -7x - 4y - 3z + 3$$

or 7x + 4y + 3z = 3.

C. The desired angle is

$$\theta = \cos^{-1}\left(\frac{v \cdot w}{\|v\| \|w\|}\right)$$

$$= \cos^{-1}\left(\frac{4}{\sqrt{30}\sqrt{3}}\right)$$

$$\doteq 1.13 \text{ radians, or}$$

$$\doteq 65.1^{\circ}.$$

II. Note that $(x, y, z) \cdot (0, 0, 1) = z$, and $||(x, y, z)|| = \sqrt{x^2 + y^2 + z^2}$. Hence the equation given can be rewritten as

$$\frac{z}{\sqrt{x^2 + y^2 + z^2}} = \frac{1}{\sqrt{2}}.$$

Changing to spherical coordinates, we know $z = \rho \cos(\varphi)$, and $\rho^2 = x^2 + y^2 + z^2$. Hence the equation can be rewritten as

$$\frac{1}{\sqrt{2}} = \frac{\rho \cos(\varphi)}{\rho} = \cos(\varphi).$$

For $0 \le \varphi \le \pi$, this has just one solution, $\varphi = \frac{\pi}{4}$. The set of all points satisfying this equation (equivalent to the original one) is a *cone* with axis along the z-axis.

Comment: A common error on this problem was to take the equation $\frac{z}{\sqrt{x^2+y^2+z^2}} = \frac{1}{\sqrt{2}}$ and equate numerators and denominators to obtain z=1 and $\sqrt{x^2+y^2+z^2}=2$. This is NOT a valid algebraic maneuver. Knowing $\frac{a}{b}=\frac{c}{d}$ does not imply that a=c and b=d; it just implies that ad=bc.

III.

A. Letting (x, y) go to (0, 0) along the line y = mx,

$$\lim_{x \to 0} f(x, mx) = \lim_{x \to 0} \frac{x \cdot mx - (mx)^2}{x^2 + 4(mx)^2}$$

$$= \lim_{x \to 0} \frac{x^2(m - m^2)}{x^2(1 + 4m^2)}$$

$$= \lim_{x \to 0} \frac{m - m^2}{1 + 4m^2} \text{ (cancel the } x^2\text{'s)}$$

$$= \frac{m - m^2}{1 + 4m^2}$$

B. From the computations in part A, we see that f(x, mx) is approaching different values as $x \to 0$, depending on the value of m. For example, we get a limiting value of 0 if m = 1, but a limiting value of $-\frac{2}{5}$ if m = -1. This implies that $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist. Hence f cannot be continuous at (0,0), since the definition of continuity is that $\lim_{(x,y)\to(0,0)} f(x,y)$ must exist and equal f(0,0).

IV.

A. The Cartesian equation of the graph is $z = \cos(\sqrt{x^2 + y^2})$. In cylindrical coordinates, $r^2 = x^2 + y^2$ and z is the Cartesian z-coordinate, so the cylindrical equation is just $z = \cos(r)$.

B. The equation of the level curve is $\cos(r) = 1$. This implies $r = 2n\pi$ some integer $n \ge 0$. If n = 0, we get a single point at the origin. If $n \ge 1$, then the polar equation $r = 2n\pi$ defines a circle of radius $2n\pi$ in the polar coordinate plane. Thus, the level curve consists of an isolated point at the origin together with an infinite collection of circles centered at the origin, with radii $2n\pi$ for $n = 1, 2, 3, \ldots$

Comment: Of course you can get the same conclusion by going back to the Cartesian coordinate

equation of the graph. The set of points in the plane with $\sqrt{x^2 + y^2} = 2n\pi$ is the circle described above when $n \ge 1$.

C. By the chain rule for 1-variable derivatives:

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left(\cos(\sqrt{x^2 + y^2}) \right) = -\sin(\sqrt{x^2 + y^2}) \cdot \frac{1}{2} (x^2 + y^2)^{-1/2} \cdot 2x.$$

This can be simplified to give

$$\frac{\partial f}{\partial x} = \frac{-x\sin(\sqrt{x^2 + y^2})}{\sqrt{x^2 + y^2}}.$$

Substituting $x = \frac{\pi}{2}$, we obtain

$$\frac{\partial f}{\partial x}\left(\frac{\pi}{2},0\right) = \frac{-\frac{\pi}{2}\sin(\frac{\pi}{2})}{\frac{\pi}{2}} = -1.$$