
MONT 104N – Modeling The Environment
Solutions for Final Examination – December 13, 2012

I. Wind power has emerged as the fastest growing source of energy for electrical power
generation in recent years. In 2004, the generating capacity of all wind turbines in use was
about 47, 600 megawatts and the generating capacity was increasing at about 26.8% per
year.

A. (10) The typical English unit of power is the horsepower. 1 horsepower = .0007457
megawatts. Convert 47, 600 megawatts to the equivalent number of horsepower.

Solution: Since 1 horsepower = .0007457 megawatts, 1 megawatt = 1/.000747
.
= 1341

horsepower. Then

47600Mw = 47600 × 1341
.
= 6.383 × 107 horsepower.

B. (10) Using the information above, construct an exponential model for WP = wind
power generation as a function of t = years since 2004. Use units of 104 megawatts for

WP.

Solution: From the given information, r = .268, so M = 1 + r = 1.268 and the
exponential model is

WP = 4.76(1.268)t.

C. (15) Fill in the table of values for WP below with values predicted by your model
for the years 2004 − 2011. Round to 2 decimal places. In what year did WP reach
approximately double the 2004 level?

Solution:

Y ear 2004 2005 2006 2007 2008 2009 2010 2011
WP 4.76 6.04 7.65 9.70 12.31 15.60 19.78 25.09

WP reached approximately double its 2004 value in 2007. (Note that the exact dou-
bling time is the solution of 1.268t = 2, or t = log(2)/ log(1.268)

.
= 2.92 years.)

D. (10) How many years will it take for wind power generation to reach 320, 000 megawatts
according to your model?

Solution: Expressing in units of 104 megawatts, we want to solve 32 = 4.76(1.268)t, or
t = log(6.722)/ log(1.268)

.
= 8.025. About 8 years.

E. (5) The following graph (produced by the Global Wind Energy Council – GWEC)
shows the actual global wind electrical power generation capacity (estimated via sur-
veys of electrical power producers). How do the actual figures compare with your
model values? Note: The vertical scale of the graph is in gigawatts. 1 gigawatt = 1000
megawatts.
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Solution: To compare the values, we want to multiply the values in part C above by 10
(since 104 megawatts = 10 gigawatts). The values are all quite close. For instance, the
2010 model prediction is 197.8 gigawatts, while the actual value was 197.6 gigawatts.

II. According to the United Nations Food and Agriculture Organization, in 2000, forest area
covered 4.038× 109 hectares of the Earth’s surface. The forest area in 2010 was 4.033× 109

hectares. Assuming that the decrease in forest area is linear, and that it will continue at the
same rate into the future, in this problem you will develop a linear model for the forest area
FA = (in units of 109 hectares) remaining as a function of t = years since 2000.

A. (10) Determine the slope for the linear model of the forest area.

Solution: The slope is

m =
(4.033 − 4.038) × 109

2010 − 2000
.
= −.0005 × 109

hectares per year.

B. (10) What is the linear equation modeling the forest area as a function of t = years
since 2000.

Solution: The model is
FA = −.0005t + 4.038

C. (10) Use your equation to predict the amount of forest area that will remain in 2020.

Solution: The year 2020 is t = 20 years after 2000. So the prediction is

FA = (−.0005)(20) + 4.038 = 4.028(×109 hectares)

D. (5) According to your model, in what year will the forest area reach 4.0×109 hectares?

Solution: We solve for t in the equation

4.0 = (−.0005)t + 4.038 ⇒ t =
4.0 − 4.038

−.0005
= 76 years

III. Suppose that a population of fast-reproducing insects in an area has a natural growth
rate of 7% per month from births and deaths, and that there is a net migration loss of 100
individuals per month.

A. (5) Which of the following difference equation models for P (n) = population in month
n fits the description above? (Place a check next to the correct one.)

1) P (n) = 7P (n − 1) − 100
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2) P (n) = 1.07P (n − 100)

3) X P (n) = 1.07P (n − 1) − 100

4) P (n) = 1.07P (n − 1) + 100

B. (10) Using an initial value P (0) = 500, determine the populations in months 1, 2, 3, 4, 5
according to the model you picked in part A and record the values in the following
table (round any decimal values to the nearest whole number)

n 0 1 2 3 4 5
P (n) 500 435 365 291 211 126

(Note: These values were computed from the difference equation in A 3) above. I kept
the decimal places each time and rounded the result for the table value, but I used the
decimal places to compute the next value. Your values would differ slightly if you used
the rounded values. Either way is OK.)

C. (10) What happens to the population in the long run as n increases? Does it tend to
a definite value? What is that value?

Solution: This is an affine difference equation and the equilibrium value is the solution
of E = 1.07E − 100, or E = 1428.6. However that is an unstable equilibrium since
M = 1.07 > 1. Mathematically, the values of the solution equation would decrease
indefinitely with n. When p(n) reaches 0, though, the population would have dis-
appeared entirely (and negative values would not correspond to realistic population
levels).

IV. Answer any three of the following four questions (only the best three will be counted if
you answer more than three).

A. (10) What does the correlation coefficient r (or its square r2) measure? How did we
use it? Explain what it would mean, for instance if r2 = 1 or r2 = 0.

Solution: r or r2 measure the degree to which one quantity y depends linearly on
another quantity x in an (x, y) data set. The value r2 = 1 would indicate perfect
linearity (with positive slope if r = 1 and negative slope if r = −1). The value r = 0,
would indicate no linear trend at all. We used this to measure “goodness of fit” for
linear models first, and then by extension to measure “goodness of fit” for exponential
and power law models, since those become linear after a transformation on the data.

B. (10) If you are fitting a power law model to a data set (xi, yi) “by hand,” you would
start by transforming the data to (X, Y ) = (log(xi), log(yi)). If the best fit regression
line for the transformed data is Y = mX + b, what is the corresponding power law
model? (Assume the logarithms have base 10 as we discussed in class.)
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Solution: If log(y) = m log(x)+ b, then exponentiating both sides with base 10, we get
y = 10bxm. This is the power law model.

C. (10) A population has unrestricted growth rate rmax = .03 and carrying capacity
K = 1000. What is the corresponding logistic model?

Solution: The model is given by

p(n) = 1.03p(n − 1) −
.03

1000
(p(n − 1))2

D. (10) The following graph shows W = the word production of photovoltaic arrays (used
for solar power generation) in units of “peak megawatts.” Between 1998 and 2007, what
type of model would be most appropriate for describing how W is growing. Explain.
Look at the vertical axis scale carefully!

Solution: The vertical axis scale is logarithmic (because multiplying y by a factor of
10 moves a fixed distance along the axis). Since that portion of the graph is very close
to linear, the relation is log(W ) = mt + b, so W = (10b)(10m)t. This is an exponential

model.

V. Essay. (60) In general terms, what is a mathematical model? Describe what they are,
how they are constructed, and how they are used. Give examples of two different types
of mathematical models we have studied in this course. Next, why do we try to build
mathematical models of aspects of the real world? Can any mathematical model be a
completely accurate representation of some aspect of the natural world? As an example,
why do scientists think it is important to understand how much CO2 is present in the
atmosphere? What tends to happen when CO2 levels rise? Describe a key piece of evidence
that suggests human activities might have changed atmospheric CO2 levels over the past
50-200 years. Explain the case for saying the evidence points to that conclusion, and relate
your answer to the results of modeling exercises we did in this class.

Model Answer: A mathematical model is an equation, a system of equations, a diagram,
or a relationship expressed in mathematical terms that aims to capture some aspect of the
behavior of a real-world system. They are usually constructed by analyzing data from ob-
servations or experiments and “fitting” a mathematical form to the observed relationship
between the measured quantities. We have studied function models including linear, expo-
nential, and power law forms, and difference equation models in this course. As mentioned
above, models are usually used to develop some understanding of the real-world system in
cases or situations where data has not been collected. They are often used to interpolate or
extrapolate values for quantities in cases where data has not been collected, for instance to
make predictions about future behavior of the system. No mathematical model can reflect
every aspect of a real world system, though, since the model-building process always leaves
out something.
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Modeling CO2 levels in the atmosphere is of importance because CO2 is a greenhouse
gas. It tends to keep solar radiation reflected from the Earth’s surface from passing back
out into space, so the higher the CO2 level is, the higher the average surface temperature
will get (other things being equal). This has secondary effects such as rising sea levels, more
severe weather patterns, and long-term climate change.

One key piece of evidence for why human activities may have changed CO2 levels over the
past 50-200 years is the measurements made at the Mauna Loa observatory in Hawaii since
the 1950’s. In one of our projects we analyzed the monthly average measurements in this
data set and we saw that, after factoring out a predictable annual seasonal variation (due
to plant activity taking up CO2 through the summer months in the northern hemisphere),
the CO2 levels measured at Mauna Loa have been steadily increasing by about 2.0 ppm per
year in recent years. (We also saw in our project that an exponential model with an annual
growth rate around .5% gave a marginally better fit than a linear model, but in real terms
the difference was not very large over the short run.) Since humans only began putting
large quantities of CO2 into the atmosphere around the time of the Industrial Revolution
in the mid-1800’s, and there have not been frequent volcanic eruptions or other occurrences
that would explain the CO2 concentration increases over this period, these measurements
are often taken as evidence that humans have had an effect on the atmosphere.
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