MONT 108N - Mathematics Through Time
 Problem Set 1
 due: in class on September 20, 2010

I. "Refresher" on arithmetic with fractions (rational numbers) and radicals. Calculate:
A) $\frac{3}{7}+\frac{4}{9}$
B) $\frac{4}{19} \times \frac{5}{12}$ (and simplify)
C) $\frac{5}{6} \div \frac{3}{4}$ (and simplify)
D) $\frac{1}{4}+\frac{\frac{1}{4}}{1-\frac{1}{3}}$ (and simplify)
E) Simplify: $\frac{\sqrt{200}}{\sqrt{8}}$.
F) Write the number $\frac{1}{\sqrt{3}-1}$ in the form $a+b \sqrt{3}$ with a, b rational numbers by multiplying by the same number in the numerator and denominator:

$$
\frac{1}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}
$$

and simplifying.
II. For us (and all mathematicians), an integer is even if it equals 2 time another integer - so the even numbers are

$$
\ldots,-8=2 \times(-4),-6=2 \times(-3),-4,-2,0=2 \times 0,2,4,6,8, \ldots
$$

All the other integers are odd.
A) Show that if an integer n is even, then n^{2} is also even.
B) Show that if an integer n is odd, then n^{2} is also odd. (Hint: The odd numbers all have 1's digit equal to $1,3,5,7$, or 9 .)
C) Show that if n is an integer and n^{2} is even, then n is also even. (This is the "converse" of the statement in part A. You may use part B here if it helps!)
III.
A) Express the following base 10 numbers using base 2 and base 8: 12, 46, 100.
B) Express the following base 2 numbers in base 10: $(10011)_{2},(111111)_{2}$.
C) Express the following base 8 numbers in base 10: $(4006)_{8},(123)_{8}$.
D) Suppose we wanted to use a base 60 positional number system. How many base 60 digits would we need? How would you write the base 60 digits as base 10 numbers?
E) Short answer: Why is having the 0 digit (almost) a necessity for a positional number system with base b ($b=$ any positive integer)? Explain.
IV. Solve by factoring (you may need to experiment a bit for the later ones!)
A) $x^{2}-5 x+6=0$
B) $x^{2}+4 x+4=0$
C) $x^{2}+12 x-108=0$
D) $3 x^{2}+28 x+32=0$
E) $t^{6}-6 t^{3}+9=0$
V. Solve using the quadratic formula
A) $x^{2}+x-1=0$
B) $x^{2}+8 x=3$
C) $2 x^{2}+7 x+3=0$

