MONT 108N - Mathematics Through Time

 Selected Solutions - Problem Set 4November 14, 2010
II. C) Method 1: Let $A_{1} A_{2} \cdots A_{n}$ be a convex polygon with n sides and n vertices, where the vertices A_{i} are numbered clockwise around the perimeter, and the edges are $A_{1} A_{2}, A_{2} A_{3}, \ldots, A_{n-1} A_{n}$ and $A_{n} A_{1}$. Subdivide the polygon into triangles by introducing new straight lines $A_{1} A_{3}, A_{1} A_{4}, \ldots, A_{1} A_{n-1}$ using Postulate 1 for each line. There are $n-3$ such lines and the original polygon is subdivided into $n-2$ triangles (since there is one triangle on each side of each of the new lines). We claim that the sum of the angles in the $n-2$ triangles equals the sum of the interior angles in the original polygon. The angles at A_{2} and A_{n} in the first and last triangles equal the corresponding angles in the original polygon. The angle at A_{3} in the polygon is $\angle A_{2} A_{3} A_{4}$, which equals the sum

$$
\angle A_{2} A_{3} A_{1}+\angle A_{1} A_{3} A_{4}
$$

Similarly, for each $i, i=3, \ldots, n-2$,

$$
\angle A_{i-1} A_{i} A_{i+1}=\angle A_{i-1} A_{i} A_{1}+\angle A_{1} A_{i} A_{i+1}
$$

which is the sum of angles in the triangles. Finally, the angle at A_{1} in the polygon is

$$
\angle A_{n} A_{1} A_{2}=\angle A_{n} A_{1} A_{n-1}+\angle A_{n-1} A_{1} A_{n-2}+\cdots+\angle A_{3} A_{1} A_{2} .
$$

Hence the sum of the angles in the $n-2$ triangles equals the sum of the angles in the original polygon. By part B , this means the sum of the angles in the polygon is $(n-2)$ straight angles.

Method 2 (proof by induction): The base case for the induction is the case of a triangle. By part B, the sum of the angles is one straight angle, which is $n-2=3-2$ straight angles for a figure with $n=3$ sides. So the formula works in that case. Now suppose the result has been proved for all convex polygons with k sides and consider a polygon $A_{1} A_{2} \cdots A_{k+1}$ with $k+1$ sides. We number the vertices in the same fashion as in the other proof. If we connect A_{1} and A_{k} with a straight line (Postulate 1), then the ($k+1$)-sided polygon is subdivided into a triangle $\triangle A_{1} A_{k} A_{k+1}$ and a k-sided polygon. By induction, the sum of the angles in the triangle and the k-sided polygon is $1+(k-2)=(k+1)-2$ straight angles. And as in the first proof, the angles at A_{1} and A_{k} in the two smaller polygons sum to the
corresponding angle in the larger polygon. Therefore we have shown that the sum of the angles in any convex n-sided polygon is $n-2$ straight angles.
III. A) Let $A B C D$ be a parallelogram. Using Postulate 2 extend the side $A B$ to a straight line so that applying Proposition 12 to drop perpendiculars from C and D, we obtain points F and G on the straight line containing $A B$.

Proposition 34 implies that in the parallelogram $A B C D, A C=B D$. By the definition of a parallelogram, $A C$ is parallel to $B D$. Then Proposition 29 implies that $\angle C A F=\angle D B G$. We also have $\angle C F A=\angle D G B$ since both are right angles (Postulate 4). Hence, by Proposition 26 (the AAS congruence criterion), $\triangle A C F$ and $\triangle B D G$ are congruent, and hence have the same area. Moreover, since $A F=B G$ in these congruent triangles, the Common Notions imply that $C D=F G$. Now consider the quadrilateral $F G C D$. This is a rectangle since $C F$ and $D G$ are parallel (Proposition 28), and all the interior angles are right angles (Propsition 29). Moreover $A B C D$ and $F G C D$ have the same area since the parallelogram is $A C F+C F B D$ and the rectangle is $C F B D+B D G$ (Common Notion 2). Therefore the area of the parallelogram is equal to $(F G)(C F)=(A B)(C F)$ which is what we wanted to show.
B) Given a triangle $\triangle A B C$.

Using Proposition 31 (and Postulate 2), construct straight line $C E$ parallel to $A B$. Then use Proposition 3 to mark off $C D$ equal to $A B$ along line
$C E$. Then join $B D$ using Postulate 1. Since $C D=A B$ along parallel lines, Proposition 33 implies that $D B=C A$ and they are parallel too. Thus $A B C D$ is a parallelogram by definition. Now since $C B$ is a straight line falling on parallel lines, $\angle A B C=\angle D C B$. Since $A B=C D$ and the side $B C$ is shared, this shows $\triangle A B C$ and $\triangle B C D$ are congruent (Proposition 4). Therefore, the area of $\triangle A B C$ is half the area of the parallelogram $A B C D$, which is $A B$ times the altitude (the perpendicular distance from C to $A B$ as in the previous part).
C. In the figure for part B, suppose the angle at A is actually a right angle. Then we are in the special case in which the altitude equals the side $A C$. Then part B implies the area is $\frac{1}{2}(A B)(A C)$.

