## "Mathematical Thinking" in Art?

- Since start of semester, we have looked at a number of examples from various cultures that (at least possibly) suggest "mathematical thinking" at work:
- Calendars - linear and cyclical time
- Maps and Models - "analogical space"
- Games - recreational mathematics
- Today, we want to continue, by considering several sorts of examples from visual art.


## Some history

- After the fall of the Western Roman Empire, the Iberian peninsula (today's Spain and Portugal) were parts of various Visigoth kingdoms
- 622 C.E. - the Prophet Muhammad flees from Medina to Mecca (start of Islamic era)
- 637 - 670 C.E. under first Muslim caliphs, Syria, Egypt, Persia, Libya, Morocco were quickly conquered by Arab armies
- 711 C.E. Iberian peninsula captured as well


## Al Andalus - Islamic Spain

- 756 - 1031 C.E. Umayyad caliphate rules in Spain (capital in Cordoba - the famous Great Mosque still exists there); various successors.
- Al Andalus never quite covered the entire peninsula, though, and Christian rulers of states in the north started to attempt to reconquer territories almost immediately (the "Reconquista").
- Another long and complicated history.


## Last stages

- From the mid $13^{\text {th }}$ century, the remaining Islamic state in Spain was in the south - the emirate of Granada (actually a vassal state of Christian kingdom of Castile).
- 1492 - Granada conquered by Ferdinand of Aragon and Isabella of Castile and Muslims expelled (most went to North Africa).


## Culture of AI Andalus

- The Muslim rulers of Al Andalus generally encouraged the development of science, philosophy, and art to a very high level.
- Just one example: Ibn Rushd (1126-1198 C.E.) - known in the rest of Europe by the Latinized name Averroës - a very famous philosopher of this period
- Essentially reintroduced Aristotle's writings to Western Europe (and sought to reconcile them with a religious point of view).


## Patrons of the arts, too

- Averroës wrote extensive commentaries on Aristotle, including especially work on natural world, physics, sciences.
- Was one of the more modern philosophers pictured in Raphael's School of Athens that we discussed last semester(!)
- The rulers of Al Andalus, especially the emirate of Granada, were also great builders and patrons of the arts
- Their main palace - the Alhambra


## The Alhambra

- (from Arabic - "the red one") $-14^{\text {th }}$ century



## Tile decorations

- Fantastic tile work wall decorations cover almost all of the interior of the Alhambra
- The Qur'an (like the Old Testament) prohibits idolatry - Islamic artists were not permitted to attempt to represent God, or the Prophet (or later -- and by extension - other humans or animals)
- Encouraged the development of very elaborate abstract, geometrical forms
- (also calligraphic forms based on Arabic script - religious symbolism tied to the Qur'an)


## An Alhambra tile design



## Another Alhambra design



## Yet Another



## Tile work, in context - arabesque



## Influences

- The Alhambra has been well-known and treasured since it was created
- Now a UNESCO World Heritage site, a Spanish heritage site, etc.
- Visited by many European and other artists over the years
- In particular, a "life changing event" for the Dutch artist Maurits Cornelis Escher, when he visited in first in 1922, and again in 1936.


## Escher

- Absolutely fascinated by the different geometric patterns embodied in the Alhambra mosaics
- Made a years-long study of all the ways such patterns might be constructed
- Incorporated them in many of his own drawings and prints (together with fanciful animals, plants, etc. - he was not bound by the same religious restrictions on figurative elements in his art)


## A typical Escher drawing



## Escher - fish and birds



## Escher - sea shells and starfish



## Escher - Day and Night

- Escher also used similar patterns in more complex ways:



## Repeating patterns

- Almost the defining property of the Alhambra tile patterns is that they can be continued to cover up as much wall surface as desired
- Notice that the Escher drawings and prints have exactly the same property (except for Night and Day, of course).
- A basic unit is shifted repeatedly to form the whole pattern in each case.
- Says - if extended indefinitely, the whole pattern would be preserved by such a shift.


## A mathematical idea

- Symmetry is the property of invariance under a transformation
- Example - bilateral symmetry (like the approximate symmetry of our bodies) is invariance under a reflection (mirror image)
- Let's go back and look at some of the Alhambra mosaics and Escher drawings/prints from this point of view.


## Observations

- In addition to shifts (or translations), some patterns have additional symmetries
- The black and white tile pattern has 120degree rotational symmetry around centers where three of the black or white tiles meet
- The Escher sea shell and starfish drawing has 90-degree and 180-degree rotational symmetries
- Some patterns (like first one from Alhambra) have reflection symmetry


## Mathematics from symmetry

- Starting in the early $19^{\text {th }}$ century, mathematicians have studied symmetry
- Key tool: the algebraic properties of the collection of all symmetries a pattern or object has.
- Denote a pattern by $X$ (think of it as a set of points in the plane, for instance)
- Consider distance-preserving mappings of the plane (called isometries) - translations, rotations, reflections are all examples.


## Mathematics from symmetry, cont.

- Given $X$ in the plane, let's denote by $\operatorname{Symm}(X)$ the collection of all isometries $S$ such that $S(X)=X$.
- Example: Let $X$ be collect of all points in the square with corners at $(1,1),(-1,1),(-1,-1)$, $(1,-1)$ in the coordinate plane.
- Then $\operatorname{Symm}(X)$ consists of:
- rotations about ( 0,0 ) by $0,90,180,270$ degrees, together with
- reflections across $x$ - and $y$-axes, and lines

$$
y=x, y=-x
$$

## Properties of $\operatorname{Symm}(X)$

- If $S, T$ are symmetries of $X$, then $S(X)=X$ and $T(X)=X$.
- This implies $S(T(X))=S(X)=X$ as well. (In other words, the composition $S \circ T$ of $S$ and $T$ is also a symmetry of $X$.
- The "identity transformation" that maps every point to itself is a symmetry of $X$.
- Moreover, $I(S(X))=S(X)=S(I(X))$ - so the identity transformation is like 0 for addition or 1 for multiplication - an identity element


## More properties of $\operatorname{Symm}(X)$

- Composition of transformations is associative: $R \circ(S \circ T)=(R \circ S) \circ T$.
- In other words, for every point $x$, $(R \circ(S \circ T))(x)=R(S(T(x)))=((R \circ S) \circ T)(x)$.
- Finally, for every $S$ in $\operatorname{Symm}(X)$ there is some $T$ in $\operatorname{Symm}(X)$ such that $S \circ T$ $=I=T \circ S$.
- That is, $T$ "undoes" what S "does"
- $T$ is called the inverse transformation of $S$.


## In our example

- For instance in the example we saw before, where $X$ was the square in the plane with corners at $(1,1),(-1,1),(-1,-1),(1,-1)$
- If $S=90$-degree rotation, then the inverse of $S$ is the 270-degree rotation.
- If $S=x$-axis reflection, then the inverse of $S$ is $S$ itself.
- (This is possible - it just says the composition $S \circ S=I$ )


## Abstracting from this

- Nowadays, this whole set-up is described by the algebraic concept of a group.
- Definition: A group is any set $G$ together with an operation * that combines pairs of elements of $G$ for which the following hold:
- for all $x, y$ in $G, x^{*} y$ is in $G$
-     * is associative: $\left(x^{\star} y\right)^{\star} z=x^{\star}\left(y^{*} z\right)$ for all $x, y, z$ in G
- G contains an identity element e for * satisfying $x^{\star} e=e^{*} x=x$ for all $x$ in $G$
- Each x in $G$ has an inverse $y$ in $G$ satisfying $x^{\star} y=y^{*} x=e$.


## The key example for us

- Note that everything we said above shows: if $X$ is a set in the plane, then $G=\operatorname{Symm}(X)$, together with the operation * $=$ 。 (composition of transformations) is a group.
- When the collection of elements of a group $G$ is finite, then we can describe the operation * by giving an operation table.
- For example, let $X$ be the square from before


## A group operation table

- $\operatorname{Symm}(X)=\left\{R_{0}=I\right.$ (orange), $R_{1}$ (light green), $R_{2}$ (darker green), $R_{3}$ (cyan), $T_{1}$ ( $y=0$ : dark blue), $T_{2}$ ( $y=x$ : violet), $T_{3}(x$ =0: pink), $\left.T_{4}(y=-x: r e d)\right\}$



## For example

- In coordinates, the 90-degree rotation $R_{1}$ is $R_{1}(x, y)=(y,-x)$.
- The $x$-axis reflection is $T_{1}(x, y)=(x,-y)$.
- So, the composition $\left(R_{1} \circ T_{1}\right)(x, y)=$ $R_{1}(x,-y)=(-y,-x)$.
- Thus $S=R_{1} \circ T_{1}$ is the reflection across the line $y=-x$.
- (It satisfies $S \circ S=I$, and

$$
S(1,-1)=(1,-1) \text { and } S(-1,1)=(-1,1) .)
$$

## On the other hand

- $\left(T_{1} \circ R_{1}\right)(x, y)=T_{1}(y,-x)=(y, x)$.
- Thus $U=T_{1} \circ R_{1}$ is the reflection across the line $y=x$.
- (It satisfies $U \circ U=I$, and $U(1,1)=(1,1)$ and $U(-1,-1)=(-1,-1)$.
- Note that this group operation is not commutative: $T_{1} \circ R_{1}$ is not the same transformation as $R_{1} \circ T_{1}$.


## "Wallpaper patterns"

- Let's concentrate now on repeating patterns that can be used to "fill out" the whole plane if extended indefinitely
- Called "wallpaper patterns" or regular tesselations
- If $X$ is such a pattern, then the symmetry group $\operatorname{Symm}(X)$ contains translations in two independent directions, plus possibly other transformations (rotations, reflections across lines)


## Groups and classification

- We can use the groups of symmetries $\operatorname{Symm}(X)$ and $\operatorname{Symm}\left(X^{\prime}\right)$ to give an idea of when two patterns are formed in the same way or are "equivalent" in a sense.
- This will be true if there is a one-to-one correspondence between the groups that takes compositions in the first group to the corresponding compositions in the second.
- Leads to a classification of all possible repeating patterns by their symmetry groups.


## There are exactly 17(!)

- See the link from our course homepage to David Joyce's "wallpaper groups" page.
- Apparently the Islamic artists who created the Alhambra tile work knew about most (or all?) of these - depending on how you extend patterns there, you can find examples similar to all these types.
- Escher essentially recreated this sort of classification too, independently (organized rather differently, though)

