
  

“Mathematical Thinking” in Art?

 Since start of semester, we have looked at a 
number of examples from various cultures that 
(at least possibly) suggest “mathematical 
thinking” at work:

− Calendars – linear and cyclical time
− Maps and Models – “analogical space”
− Games – recreational mathematics 

 Today, we want to continue, by considering 
several sorts of examples from visual art.



  

Some history

 After the fall of the Western Roman Empire, 
the Iberian peninsula (today's Spain and 
Portugal) were parts of various Visigoth 
kingdoms 

 622 C.E.  – the Prophet Muhammad flees from 
Medina to Mecca (start of Islamic era)

 637 – 670 C.E. under first Muslim caliphs, 
Syria, Egypt, Persia, Libya, Morocco were 
quickly conquered by Arab armies 

 711 C.E.  Iberian peninsula captured as well



  

Al Andalus – Islamic Spain

 756 – 1031 C.E. Umayyad caliphate rules in 
Spain (capital in Cordoba – the famous Great 
Mosque still exists there); various successors.

 Al Andalus never quite covered the entire 
peninsula, though, and Christian rulers of 
states in the north started to attempt to 
reconquer territories almost immediately (the 
“Reconquista”).

 Another long and complicated history.



  

Last stages

 From the mid 13th century, the remaining 
Islamic state in Spain was in the south – the 
emirate of Granada (actually a vassal state of 
Christian kingdom of Castile).  

 1492 – Granada conquered by Ferdinand of 
Aragon and Isabella of Castile and Muslims 
expelled (most went to North Africa).  



  

Culture of Al Andalus
 The Muslim rulers of Al Andalus generally 

encouraged the development of science, 
philosophy, and art to a very high level.

 Just one example:  Ibn Rushd (1126 – 1198 
C.E.) – known in the rest of Europe by the 
Latinized name Averroës – a very famous 
philosopher of this period

 Essentially reintroduced Aristotle's writings to 
Western Europe (and sought to reconcile them 
with a religious point of view).  



  

Patrons of the arts, too

 Averroës wrote extensive commentaries on 
Aristotle, including especially work on natural 
world, physics, sciences.

 Was one of the more modern philosophers 
pictured in Raphael's School of Athens that we 
discussed last semester(!)

 The rulers of Al Andalus, especially the 
emirate of Granada, were also great builders 
and patrons of the arts

 Their main palace – the Alhambra



  

The Alhambra

 (from Arabic – “the red one”) – 14th century



  

Tile decorations
 Fantastic tile work wall decorations cover 

almost all of the interior of the Alhambra
 The Qur'an (like the Old Testament) prohibits 

idolatry – Islamic artists were not permitted to 
attempt to represent God, or the Prophet (or 
later -- and by extension – other humans or 
animals) 

 Encouraged the development of very 
elaborate abstract, geometrical forms

 (also calligraphic forms based on Arabic script 
– religious symbolism tied to the Qur'an)



  

An Alhambra tile design



  

Another Alhambra design



  

Yet Another 



  

Tile work, in context – arabesque



  

Influences

 The Alhambra has been well-known and 
treasured since it was created

 Now a UNESCO World Heritage site, a 
Spanish heritage site, etc.

 Visited by many European and other artists 
over the years 

 In particular, a “life changing event” for the 
Dutch artist Maurits Cornelis Escher, when he 
visited in first in 1922, and again in 1936.  



  

Escher
 Absolutely fascinated by the different 

geometric patterns embodied in the Alhambra 
mosaics

 Made a years-long study of all the ways such 
patterns might be constructed

 Incorporated them in many of his own 
drawings and prints (together with fanciful 
animals, plants, etc. – he was not bound by 
the same religious restrictions on figurative 
elements in his art)



  

A typical Escher drawing



  

Escher – fish and birds



  

Escher – sea shells and starfish



  

Escher – Day and Night

 Escher also used similar patterns in more 
complex ways:



  

Repeating patterns
 Almost the defining property of the Alhambra 

tile patterns is that they can be continued to 
cover up as much wall surface as desired

 Notice that the Escher drawings and prints 
have exactly the same property (except for 
Night and Day, of course).

 A basic unit is shifted repeatedly to form the 
whole pattern in each case.  

 Says – if extended indefinitely, the whole 
pattern would be preserved by such a shift.



  

A mathematical idea

 Symmetry is the property of invariance under 
a transformation

 Example – bilateral symmetry (like the 
approximate symmetry of our bodies) is 
invariance under a reflection (mirror image)

 Let's go back and look at some of the 
Alhambra mosaics and Escher drawings/prints 
from this point of view.  



  

Observations
 In addition to shifts (or translations), some 

patterns have additional symmetries
− The black and white tile pattern has 120-

degree rotational symmetry around centers 
where three of the black or white tiles meet

− The Escher sea shell and starfish drawing has 
90-degree and 180-degree rotational 
symmetries 

− Some patterns (like first one from Alhambra) 
have reflection symmetry 



  

Mathematics from symmetry
 Starting in the early 19th century, 

mathematicians have studied symmetry 
 Key tool:  the algebraic properties of the 

collection of all symmetries a pattern or object 
has.  

 Denote a pattern by X (think of it as a set of 
points in the plane, for instance) 

 Consider distance-preserving mappings of the 
plane  (called isometries) – translations, 
rotations, reflections are all examples.  



  

Mathematics from symmetry, cont.
 Given  X   in the plane,  let's denote by  

Symm(X)  the collection of all isometries  S  
such that  S(X) = X.   

 Example:  Let  X  be collect of all points in the 
square with corners at  (1,1), (-1,1), (-1,-1), 
(1,-1) in the coordinate plane.  

 Then  Symm(X)  consists of:
− rotations about (0,0)  by  0, 90, 180, 270 

degrees, together with
− reflections across x- and y-axes, and lines       

  y = x, y = -x. 



  

Properties of Symm(X)

 If  S, T  are symmetries of  X,  then  S(X) = X 
and T(X) = X. 

 This implies  S(T(X)) = S(X) = X  as well.  (In 
other words, the composition S∘T  of  S  and  
T  is also a symmetry of  X.

 The “identity transformation” that maps every 
point to itself is a symmetry of  X.

 Moreover,  I(S(X)) = S(X) = S(I(X)) – so the 
identity transformation is like 0 for addition or 1 
for multiplication – an identity element 



  

More properties of Symm(X)

 Composition of transformations is associative: 
R∘(S∘T) = (R∘S)∘T.

 In other words, for every point x,  
(R∘(S∘T))(x) = R(S(T(x))) = ((R∘S)∘T)(x). 

 Finally, for every  S  in  Symm(X)  there 
is some  T  in  Symm(X)  such that  S∘T 
= I = T ∘ S.

 That is,  T  “undoes” what  S  “does”
 T  is called the inverse transformation of S. 



  

In our example

 For instance in the example we saw before, 
where  X  was the square in the plane with 
corners at  (1,1), (-1,1), (-1,-1), (1,-1)

 If  S = 90-degree rotation, then the inverse of 
S is the 270-degree rotation.

 If  S = x-axis reflection, then the inverse of S  
is  S  itself.  

 (This is possible – it just says the composition  
S ∘ S = I)



  

Abstracting from this 
 Nowadays, this whole set-up is described by 

the algebraic concept of a group.
 Definition:Definition: A group is any set  G  together 

with an operation * that combines pairs of 
elements of  G  for which the following hold:

− for all  x, y in G,  x*y is in G
− * is associative:  (x*y)*z = x*(y*z) for all x,y,z in 

G
− G contains an identity element e for * 

satisfying x*e = e*x = x  for all x in G
− Each x in G has an inverse y in G satisfying 

x*y= y*x = e.   



  

The key example for us

 Note that everything we said above shows: if  
X  is a set in the plane, then  G = Symm(X), 
together with the operation  * = ∘ 
(composition of transformations) is a 
group.

 When the collection of elements of a group  G  
is finite,  then we can describe the operation  * 
by giving an operation table.

 For example, let  X  be the square from before



  

A group operation table
 Symm(X) = {R₀ = I (orange), R₁ (light 

green), R₂ (darker green), R₃ (cyan), T₁ 
(y=0: dark blue), T₂ (y =x: violet), T₃ (x  
=0: pink), T₄ (y = -x: red)} 



  

For example
 In coordinates, the 90-degree rotation  R₁  is  

R₁(x,y) = (y,-x).  
 The  x-axis  reflection is  T₁(x,y) = (x,-y).
 So, the composition (R₁ ∘ T₁)(x,y) = 

R₁(x,-y) = (-y,-x).  
 Thus  S = R₁ ∘ T₁ is the reflection across 

the line y = -x.  
 (It satisfies S ∘ S = I, and 

 S(1,-1) = (1,-1) and  S(-1,1) = (-1,1).)



  

On the other hand

 (T₁ ∘ R₁)(x,y) = T₁(y,-x) = (y,x).  
 Thus  U = T₁ ∘ R₁ is the reflection across 

the line y = x.  
 (It satisfies U ∘ U = I, and 

 U(1,1) = (1,1) and  U(-1,-1) = (-1,-1).)
 Note that this group operation is not 

commutative:  T₁ ∘ R₁ is not the same 
transformation as  R₁ ∘ T₁.



  

“Wallpaper patterns”
 Let's concentrate now on repeating patterns 

that can be used to “fill out” the whole plane if 
extended indefinitely

 Called “wallpaper patterns” or regular 
tesselations

 If  X  is such a pattern, then the symmetry 
group Symm(X)  contains translations in two 
independent directions, plus possibly other 
transformations (rotations, reflections across 
lines)



  

Groups and classification

 We can use the groups of symmetries  
Symm(X) and  Symm(X')  to give an idea of 
when two patterns are formed in the same 
way or are “equivalent” in a sense. 

 This will be true if there is a one-to-one 
correspondence between the groups that 
takes compositions in the first group to the 
corresponding compositions in the second.

 Leads to a classification of all possible 
repeating patterns by their symmetry groups.



  

There are exactly 17(!)

 See the link from our course homepage to 
David Joyce's “wallpaper groups” page.

 Apparently the Islamic artists who created 
the Alhambra tile work knew about most (or 
all?) of these – depending on how you 
extend patterns there, you can find examples 
similar to all these types.

 Escher essentially recreated this sort of 
classification too, independently (organized 
rather differently, though)
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