
MONT 104N – Modeling The Environment
Solutions for Final Examination Review Problems – December 6, 2019

I. In 1990, forests covered 4.047× 109 hectares of the Earth’s surface. By 2000,
forest area had decreased to 4.038 × 109 hectares. Assuming that the decrease
in forest area is linear, and that it will continue at the same rate into the future,
in this problem you will develop a linear model for the forest area remaining as
a function of t = years since 1990.

A. Determine the slope for the linear model of the forest area.

Solution: The slope is

m =
4.038 − 4.047

2000 − 1990
= −.0009.

The slope is in units of 109 hectares per year. (This is equivalent to a net
loss of 900,000 hectares, or 9000 square kilometers per year.)

B. What is the linear equation modeling the forest area as a function of t =
years since 1990.

Solution: Writing FA for the forest area, the model would be

FA = 4.047 − .0009t

C. (10) According to your model, in what year will the forest area reach
4.0 × 109 hectares?

Solution: We solve for t from the equation:

4.0 = 4.047 − .0009t,

so

t =
4.047 − 4.0

.0009

.
= 52

This corresponds to 52 years after 1990, so the year 2042.

D. (5) According to the United Nations Food and Agriculture Organization,
the actual forest area remaining in 2010 was 4.033 × 109 hectares. How
close is the prediction your model from part B gives for the forest area in
2010?

Solution: Using the model equation from part B to predict the amount of
forest area that will remain in 2010: 2010 is t = 20 years after 1990, so
the model predicts

FA = 4.047 − (.0009)(20) = 4.029 (×109 hectares)

The rate of deforestation was slower between 2000 and 2010 than the
rate between 1990 and 2010. So the model predicted a lower forest area
remaining than the actual figure.
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II. Wind power has emerged as a fast growing source of energy for electrical
power generation in recent years. In 2016, the generating power of wind turbines
installed around the world was about 301 gigawatts and it was increasing at
about 33.2% per year.

A. The typical English unit of power is the horsepower. 1 horsepower =
7.457× 10−7 gigawatts. Convert 301 megawatts to the equivalent number
of horsepower.

Solution: Thinking about the unit conversion, we see

horsepower = megawatt × horsepower

megawatt

That is, there are
1

7.457 × 10−7

.
= 1.341 × 106

horsepower in one gigawatt. Hence 301 gigawatts is

301 × 1.341 × 106 = 403.641 × 106
.
= 4.03 × 108 horsepower

B. Construct an exponential model for WP = wind power generation as a
function of t = years since 2016. Use units of 102 gigawatts for WP – see
the entry for 2016 in the table below.

Solution: In units of 102 gigawatts, the model equation is:

WP = (3.01)(1.332)t

C. Fill in the table of values for WP below with values predicted by your
model for the years 2017 − 2021. Round to 2 decimal places. About how
many years will it take for WP to reach approximately double the 2016
level?

Y ear 2016 2017 2018 2019 2020 2021
WP 3.01 4.01 5.34 7.11 9.48 12.62

WP will double in between 2 and 3 years. (Note: The doubling time for
an exponential function with a = 1.322 can also be found by the formula
in one of the problems sets:

1.322 = 2
1
t2

where t2 = log10(2)
log10(1.332)

.
= 2.42 years.)

D. (5) How many years will it take for wind power generation to reach 20×102

gigawatts according to your model?
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Solution: The equation we want to solve is 20 = (3.01)(1.332)t. This is

true when t = log10(20/3.01)
log(1.332)

.
= 6.6. So the projection is this value will be

reached between 2022 and 2023.

III. Suppose that a population of fast-reproducing insects in an area has a
natural growth rate of 5% per month from births and deaths, and that there is
a net migration loss of 20 individuals per month.

A. Write a difference equation that models this situation.

Solution: The equation would be

P (n + 1) = (1.05) · P (n) − 20

B. Using an initial value P (0) = 500, determine the populations in months
1, 2, 3, 4, 5 according to the model you picked in part A and record the
values in the following table (round any decimal values to the nearest
whole number)

Solution:
n 0 1 2 3 4 5

P (n) 500 505 510 516 522 528

C. What happens to the population in the long run as n increase? Does it
tend to a definite value?

Solution: It seems that the population will continue increasing at an in-
creasing rate as n increases. If P (n) > 400, then P (n+ 1) = (1.05)P (n)−
20 > P (n + 1) and the difference P (n + 1) − P (n) = (.05)P (n) − 20 is
bigger the larger P (n) is. (Note: By the formula we discussed in class for
the general solution of affine first order difference equations, this difference
equation has an equilibrium solution at P = 20

.05 = 400. However, it is an
unstable equilibrium since 1.05 > 1. This means that with an initial value
P (0) = 500 > 400, the solution will grow without bound as n increases.
In a question like this, I could also ask you to find the equilibrium level.)

IV. Answer the following questions with a few sentences each.

A. If you are fitting an exponential model to a data set (xi, yi) “by hand,”
you start by transforming the data to (X,Y ) = (xi, log10(yi)). If the best
fit regression line for the transformed data is Y = mX + b, what is the
corresponding exponential model? (Assume the logarithms have base 10
as we discussed in class.)

Solution: The linear equation is equivalent to log10(y) = mx+b in terms of
the original variables. So exponentiating both sides we get y = 10b·(10m)x.
In other words, 10m is the base a of the exponential function, and 10b is
the constant multiplier.
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B. If you are fitting a power law model to a data set (xi, yi) “by hand,” you
start by transforming the data to (X,Y ) = (log10(xi), log10(yi)). If the
best fit regression line for the transformed data is Y = mX + b, what is
the corresponding power law model? (Assume the logarithms have base
10 as we discussed in class.)

Solution: The linear equation is equivalent to log10(y) = m log10(x) + b
in terms of the original variables. So exponentiating both sides we get
y = 10b · xm. In other words, m is the exponent, and 10b is the constant
multipler

C. What does the R2 statistic in measure in linear regression? How did we
use it? Explain what it would mean, for instance if R2 = 1.

Solution: The R2 statistic measures the degree of linearity in a scatter
plot (in other words, how close the data points come to lying on a single
straight line). If R2 = 1, then all the points are on a single line. We used
this to measure the goodness of fit even for exponential models. When we
did this, we were looking at the correlation coefficient for the transformed
data (the (xi, log10(yi)) in the exponential case).

D. What type of chart (scatterplot, pie chart, bar chart, etc.) would be most
useful to describe the composition of a forest if there 5 different types of
trees present in different concentrations per acre? Explain, and illustrate
your answer with a chart if a typical acre of forest contains 10 oaks, 12
maples, 5 pines, 2 hemlocks, and 1 chestnut.

Solution: For a chart indicating the composition of a whole made up of
several parts, either a pie chart or a bar chart could be used. But a pie
chart would be a slightly superior choice to show the composition. For a
pie chart, we would compute the percentages of the whole represented by
each species: 10 + 12 + 5 + 2 + 1 = 30 trees. So oaks account for 10/30 ×
100% = 33.3%, maples account for 12/30 × 100%, or 40%, pines account
for 5/30 × 100%, or 16.7%, hemlocks account for 6.7%, and chestnuts
account for the remaining 3.3%. These would be shown as fractions of a
whole circle in the pie chart.

E. What difference equation would model a population undergoing logistic
growth if the population was growing at about 4% per year when the
population is much smaller than the carrying capacity M = 400 of the
habitat.

Solution: We see r = .04, so equation is

P (n + 1) = (1 + r)P (n) − r

M
(P (n))2 = 1.04P (n) − .04

400
(P (n))2.

F. What feature of the solutions of the Lotka-Volterra equations is considered
a confirmation that this model is capturing an important aspect of real-
world predator-prey interactions?
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Solution: The fact that the solutions tend to exhibit cyclical, oscillatory
behavior is a confirmation of this. The equations were originally developed
to model the predator-prey behavior of pairs of species (like the Canada
lynx and snowshoe hares that we saw in class). Since those populations
are observed to oscillate in the wild, the model is (at the least) doing
something similar.

Extra Review Problems from Book

Chapter 1.

5. (a) 44, 200 km2 = 44, 200 km2 · (.621)2 mi2/km2 .
= 17045 mi2.

(b) The thickness in kilometers is .350 km, so the volume in cubic kilo-
meters = 44, 200 · .350

.
= 15470km3. Then converting to cubic feet, 1

cubic kilometer is about (5280/1.61)3
.
= (3280)3 cubic feet, so 15470

cubic kilometers is
.
= 3.53 × 1010 cubic feet.

11. (a) log10(5.34689)
.
= .7281, log10(53.4689)

.
= 1.7281 and log10(534.689)

.
=

2.7281. What is happening is that when you multiply by a power 10k,
then log10(10k) = k is added to the value of the logarithm, by part
(1) of Proposition 1.8.

(b) log7(34.333) = log10(34.333)/ log10(7)
.
= 1.8172 (see formula (1.2) on

page 12.)

(c) ln(100.3)
.
= 4.6082. (This could also be computed as log10(100.3)/ log10(e),

where e is the base of the natural logarithms.)

13. (a) 20 · log10(5000/20)
.
= 47.96 dB.

(b) If L = 1 dB, then 1 = 20 · log10(pm/20), so pm = 20 · 101/20
.
= 22.44

micropascals. Similarly if L = 2 dB, then pm
.
= 25.18 micropascals,

and if L = 10 dB, then pm
.
= 63.25 micropascals.

(c) About 20 ·10150/20
.
= 6.32×108 micropascals. This shows a logarith-

mic scale in action!

Chapter 2.

2. (a) First student: absolute error = 3.44 − 3.40 = .04 meter. Percent
relative error = 3.44−3.40

3.40 × 100%
.
= 1.2%. Second student: absolute

error = .44 − .40 = .04 meter. Percent relative error = .44−.40
.40 ×

100% = 10%.

(b) The first student was more accurate because the percent relative error
was smaller.

(c) The absolute error tells you how far off the measurement is from
the true value. Absolute errors are important one measurement at a
time. The percentage relative error expresses the error as a percent
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of the exact value. So, percentage relative errors are more useful for
comparing accuracies of different measurements.

(d) Precision of a set of measurements is not the same as accuracy. Ac-
curacy measures how far the measurements are from an exact value.
Precision measures how close the measurements are to each other.

7. (a) Boston: 13321.3 people per square mile
.
= 34530.1 people per square

kilometer. Chicago: 11868.1 people per square mile
.
= 30763.3 peo-

ple per square kilometer. Miami: 11198.7 people per square mile
.
= 29028.1 people per square kilometer. NYC: 27016.3 people per
square mile

.
= 70029 people per square kilometer. Philadelphia:

11233.6 people per square mile
.
= 29118.7 people per square kilo-

meter. San Francisco: 17246.4 people per square mile
.
= 44704.4

people per square kilometer.

(b) In 2016, from page 26, we see that the population of New York was
estimated at 8.54 × 106. That gives a population density of 28222.1
people per square mile. The percent change in population density
from 2010 (reference) to 2016 (comparison) was

28222.1 − 27016.3

27016.3
× 100%

.
= 4.5%

The numbers would come out the same if the densities per square
kilometer were used since the conversion factors from square miles to
square kilometers in the numerator and denominator would cancel.

Chapter 4.

6. (a) y − 5.2 = 7 · (x− 3.2) or y = 7x− 17.2.

(b) y − 1 = −1/7(x− 0) or y = −x/7 + 1.

8. g(x) is the linear one because that is the only function for which the slopes
between pairs of points are always the same = −2.25. The equation is
y − 1.525 = −2.25(x− 1.1) or y = −2.25x + 4.

9. Kudzu area = 7.4−0
2018−1876 (t− 1876) (in units of 106 acres, t in years).

Chapter 5.

2. All of these are solved by taking logarithms:

(a) x = 1
2
log10(28.3/4.5)

log10(3.4)

.
= .7513.

(b) x = log10(3.5)
log10(4)−log10(2)

.
= 1.8074.

(c) x = log10((7.9−5.6)/2.8)
log10(7.4)

.
= −.09828.
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4. (a) f(t) = 8.54 · (1.15)t.

(b) f(t) = 3.5711 · (1.03)t.

6. (a) doubling time = log10(10/5)
log10(1.25)

.
= 3.106

(b) doubling time = log10(36.6/18.3)
log10(3.4)

.
= .5664.

7. As in the special cases in 6 above, we solve for t in the equation

2 ·Q(0) = Q(0) · at

to find the doubling time, t2. Dividing both side by Q(0), then taking
logarithms, we get

t2 =
log10(2)

log10(a)
.

8. This follows from rules for exponents. From the previous problem, log10(a) =
log10(2)

t2
, so

a = 10log10(a) = 10log10(2)· 1
t2 = 21/t2 .

Then raising both sides to the t power and multiplying by Q(0) we get

Q(t) = Q(0) · at = Q(0) ·
(

21/t2
)t

= Q(0) · 2t/t2 .

9. (a) Proceeding as in Example 5.8 in the text, from the half-life of this
isotope:

Q(28.8) =
1

2
·Q(0) = Q(0) · a28.8

so log10(a) = log10(.5)
28.8

.
= −.0105 and a = 10−.0105 .

= .9762. Then the
model is

Q(t) = Q(0) · (.9762)t.

(b) We solve for t:
.01 ·Q(0) = Q(0) · (.9762)t,

so t = log10(.01)
log10(.9762)

.
= 191.2 years.

Chapter 7.

1. The percentage change gives Q(n + 1) −Q(n)Q(n) × 100 = r, so Q(n +
1) =

(
1 + r

100

)
·Q(n). Hence if we start from t = 0, we get

Q(1) =
(

1 +
r

100

)
Q(0)

Q(2) =
(

1 +
r

100

)
Q(1) =

(
1 +

r

100

)2

Q(0)

Q(3) =
(

1 +
r

100

)
Q(2) =

(
1 +

r

100

)3

Q(0)
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and so forth. The general pattern is

Q(n) =
(

1 +
r

100

)n

Q(0).

Note that this is an exponential function of n, with a =
(
1 + r

100

)
.

4. (a) Q(n) = 3.4 · (1.8)n by problem 1 above.

(b) Here we want to use the general solution for affine first order equa-
tions from (7.4) on page 129:

Q(n) =

(
4.3 +

(−.03)

(.78 − 1)

)
(.78)n− (−.03)

(.78 − 1)
= 4.4364·(.78)n−.1364.

8. (a) From the equation, r = .03 and r/M = .006, so M = 5. Since
Q(0) = .8 < M , the solution will increase in a sort of S-shape and
tend toward M as a horizontal asymptote as n increases.

(b) r = .34 and r/M = .0009, so M = 377.8. Since Q(0) = 420 > M ,
the solution will decrease toward M .

(c) r = .86 and r/M = .0048, so M = 179.2. Since Q(0) < M , this is
similar to part (a).

Chapter 8.

3. The equations are

A(n + 1) = .4A(n) + .25B(n) + .5C(n)

B(n + 1) = .4B(n) + .4A(n)

C(n + 1) = .33C(n) + .2B(n)
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