
College of the Holy Cross, Fall Semester 2018
MONT 104N – Modeling the Environment

Final Exam, December 13

I. The table below shows estimates collected in the EDGAR database created by the Euro-
pean Commission and the Netherlands Environmental Assessment Agency of the amounts
of carbon dioxide emissions from burning of fossil fuels in 2015 and 2016 by country. The
units are megatonnes = 106 metric tonnes. The populations are in units of millions = 106

of people:
Country CO2 2015 CO2 2016 2015 Population

China 10.642 10.433 1367
United States 5.712 5.012 321

India 2.455 2.533 1252
Russia 1.761 1.662 142
Japan 1.253 1.240 127

Germany .778 .776 81
Whole world 36.061 35.753 7256

A. (5) 1 metric tonne is 1000 kg and 1 kg
.
= 2.205 lb. What was the equivalent amount

of carbon dioxide emissions for the U.S. in 2015, in units of pounds.

Solution: The 2015 U.S. carbon dioxide emissions were

5.712×106 tonnes = 5.172×106 tonnes×1000kg/tonne×2.205 lb/kg
.
= 1.259×1010 lb.

B. (5) Suppose that China’s carbon dioxide emissions were decreasing exponentially. What
would be the exponential model fitting the two data points you have exactly? Take
t = 0 to correspond to the year 2015. What would your model predict for China’s
emissions in the year 2020?

Solution: The formula would be found in the form CO2(t) = 10.642 · at. The value of
a is determined by the value from 2016, which is t = 1:

CO2(1) = 10.433 = 10.642 · a1

Hence a
.
= .98036, so CO2(t) = 10.642 · (.98036)t. (This could also be done by

computing the percent decrease between the 2015 value and the 2016 value.) The
value in 2020, or t = 5, would be CO2(5) = 10.642 · (.98036)5

.
= 9.637 megatonnes.

C. (10) Now, let’s look at this data from another perspective. What are the per capita
carbon dioxide emissions in units of metric tonnes per person for each of these coun-
tries? Construct a chart or charts (your choice of types) showing how the 2015 total
emissions and the 2015 emissions per capita compare for these countries. Pay special
attention to any changes in the relative orderings when you go from the total emissions
to the per capita emissions.
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Solution: We compute the per capita emissions by dividing the total amount by the
population. For China, for instance the result is

10.642× 106 tonnes

1367× 106 people
.
= .00778 tonnes/person = 7.78 kg/person.

It’s also OK to leave the answer in tonnes per person, but the numbers there will be
quite small. Doing this for all of the countries and giving the answers in kg/person:

Country CO2 2015 2015 Populations Per Capita
China 10.642 1367 7.78

UnitedStates 5.712 321 17.79
India 2.455 1252 1.96

Russia 1.761 142 12.4
Japan 1.253 127 9.87

Germany .778 81 9.605
Whole world 36.061 7256 4.97

To show this graphically, there are a number of options. One would be to give two
separate bar charts, one for the total emissions levels, one for the per capita levels.
If done that way, to show the different relative ordering you might list the bars in
decreasing order. You could also show two bars for each country in one chart, one for
the total amount, one for the per capita amount. The different units would require
two different vertical scales then, so this less than optimal, but still acceptable. In any
case notice the way things get reordered: In terms of total amounts, it’s

China > US > India > Rusia > Japan > Germany

But in terms of per capita amounts, it’s

US > Russia > Japan > Germany > China > India

(and India is way below the world-wide per capita average). The first ordering is
closely correlated with the total sizes of these nations’ economies; the second ordering
shows how the effects of differences in sizes of populations affect the total. The second
ordering is more closely aligned with living standards and how they interact with
environmental awareness.

II. The following graph constructed by Makiko Sato and James Hansen at the Columbia
University Climate Science, Awareness and Solutions project, shows the change in global
average sea level over the period 1900 to the present. It’s also a nice example of how the
basic modeling techniques we have discussed can be adapted to deal with dynamic, changing
situations.
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The vertical axis is the sea level anomaly—the difference between the observed levels in later
years and the average level in 1900.

A. (12) The information included in the graph shows that Sato and Hansen have con-
structed three separate linear models over three different time periods: one covering
the period 1900 - 1930, the second covering the period 1930 - 1992 and the last one
covering the period 1993 to 2017. The estimated slopes are given in units of mm/yr.
Find the equations of the three linear models (the equations of the three black lines in
the graph) for average mean sea level L(t), using t = actual year in each case. Use the
values 0 for L(1900), 18 for L(1930), and 104.8 for L(1993).

Solution: The equations are (output in units of mm):

1900− 1930L(t) = .6(t− 1900) = .6t− 1140

1930− 1992L(t) = 1.4(t− 1930) + 18 = 1.4t− 2684

1993− 2017L(t) = 3.1(t− 1993) + 104.8 = 3.1t− 6073.5

(Note: the negative values just mean that if the lines were extended to the left back
to the year 0, they would be intersecting the vertical axis way below 0. However, that
is essentially a silly thing to do here, since it’s extrapolating so far beyond the range
of times the data came from.)

B. (3) The legend indicates that the first two models were found from adjusted tide gauge
data, while the third was obtained from satellite radar measurements. Which of these
two methods would you guess is more accurate? How does that relate to the appearance
of the graph(s)? Discuss briefly.1

1Note: The lighter blue region around the blue line plots shows a series of “error bars” indicating a
reasonable range of values consistent with the measured data. There’s something like that too around the
red portion of the plot, but it’s much less visible.
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Solution: The satellite altimetry measurements are almost certainly more accurate.
This is confirmed by the fact that the lighter blue “error bars” of reasonable values
extend much farther up and down from the lines than the red part of the graph does.

III. Suppose that a endangered population of spotted owls in a protected forest is decreasing
at a net rate of 10% per year from births and deaths, but human-reared owls are being
reintroduced into the habitat at a rate of 16 individuals per year.

A. (5) Write a difference equation that models the owl population.

Solution: The difference equation is

P (n+ 1) = (1− .1)P (n) + 16 = .9P (n) + 16

B. (5) Using an initial value P (0) = 40, determine the populations in years 1, 2, 3, 4, 5
according to the model you stated in part A and record the values in the following
table (round any decimal values to the nearest whole number)

n 0 1 2 3 4 5
P (n) 40 52 63 73 81 89

C. (5) What happens to the population in the long run as n increase? Does it tend to a
definite value? If so, what is it? If not, why not?

Solution: There is an equilibrium value at the solution of

P (n+ 1)− P (n) = −.1P (n) + 16 = 0,

so P (n) = 160. You can see this from the form of the solution with P (0) = 40. Using
the general solution of first-order affine equations from Equation (7.4) in the text,

P (n) =

(
40− 16

.1

)
· (.9)n +

16

.1
= 160− 120 · (.9)n.

Since .9 < 1, as n→∞, P (n)→ 160 and this is a stable equilibrium.

IV. Answer any three of the following briefly. If you submit answers for all four, only the
best three will be counted.

A. (5) If you are fitting an power function model to a data set (xi, yi) “by hand,” you would
start by transforming the data to what new form (Xi, Yi)?. If the best fit regression
line for the transformed data is Y = mX+b, what is the corresponding power function
model? (You may use logarithms to base 10 as we discussed in class.)
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Solution: You would use a log-log transform taking the original data points to (Xi, Yi) =
(log(xi), log(yi)). If the regression line for the transformed data points has equation
Y = mX + b, then to remove the logarithms we exponentiate. The corresponding
power function will be obtained like this:

y = 10log(y) = 10m log(x)+b = 10log(xm) · 10b = 10b · xm.

The slope of the regression line becomes the scaling exponent m and 10b gives the
constant multiplier.

B. (5) What difference equation would model a population undergoing logistic growth if
the population was growing at about 3% per year when the population is much smaller
than the carrying capacity M = 1000 of the habitat?

Solution:

P (n+ 1) = 1.03P (n)− .03/1000(P (n))2 = 1.03P (n)− .00003(P (n))2.

C. (5) Describe the SIR model for infectious disease outbreaks and give the corresponding
difference equations.

Solution: The population is divided into susceptible, infected, and removed sub-
populations. There is no population dynamics due to births or deaths, and no im-
migration, or emigration take place. New infections are produced by contacts between
susceptible and infected individuals, and those are modeled by product terms S(n)I(n).
The equations are

S(n+ 1) = S(n)− βS(n)I(n)

I(n+ 1) = I(n) + βS(n)I(n)− γI(n)

R(n+ 1) = R(n) + γI(n).

D. (5) What feature of the solutions of the Lotka-Volterra equations is considered to be a
confirmation that this model is capturing an important aspect of real-world predator-
prey interactions?

Solutions: The solutions exhibit approximately cyclical behavior that is similar (at
least in some ways) to the behavior of real-world predator-prey systems. We discussed
how this worked for the Canada lynx and snowshoe hare populations according to the
famous dataset of pelts sold by trappers to the Hudson’s Bay Company in Canada
between 1840 and 1930.

Essay (30)

In general terms, what is a mathematical model? Describe in general terms what they
are, how they are constructed, and how they are used. Give examples of three different
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types of mathematical models we have studied this semester. Even if mathematical models
don’t capture every feature of a real world situation, why is it still important to develop
them and understand the information we get from them? For instance, what conclusions
about use of natural resources did we derive by looking at logistic models with various
types of harvesting in the Chapter Project from Chapter 7? As another example, how are
mathematical models important in understanding our choices of which energy sources to
use? Why is it important to understand how radioactive substances decay? What type(s)
of model(s) that we discussed would apply to describe that process? What are some of the
issues involved with using radioactive decay to generate electricity–that is, why is this not a
“no-brainer” as a solution to the problem of CO2 buildup in the atmosphere from fossil fuel
burning?

Model Response: A mathematical model of something is a function, graph, an equation or
system of equations, etc. constructed within the “mathematical world” in order to study,
or even make predictions about, the behavior of a real-world system. Constructing mathe-
matical models relies on a process of abstraction, by which some aspects of the real-world
system under consideration are not included. The predictions produced from these simplified
versions of reality through use of mathematical tools are then compared with real-world data
and further iterations of model construction and testing often ensue.

We have studied various types of models using linear, exponential, and power functions.
We also studied single difference equations (affine and logistic equations especially) and
systems of coupled difference equations (such as the SIR and Lotka-Volterra predator-prey
equations) as models. In many cases, a mathematical model may be the only way to study
a real world system where we cannot do controlled experiments. This is because it is often
impossible or impractical to manipulate a natural environment for the purposes of seeing
how it behaves under certain circumstances. Even when some things are “left out” of a
model, if enough of the properties of the real-world system are captured, we can still get
some insight or information from a model. Careful comparison with the real-world system
might be needed to validate that those insights or information are valid, though.

For instance, in looking at logistic equations with constant harvesting in the Chapter 7
project, we saw that it is possible to introduce “thresholds” at unstable equilbrium values in
systems. This means that there can be harvesting levels that produce population crashes if
the initial population is too small, while initial populations that are large enough yield growth
toward a stable equilibrium as in the usual logistic case (with small enough r parameter
values). This behavior was not present before the human intervention through the harvesting
and knowing the population dynamics can work that way is an important part of sustainable
management of natural resources.

Various models we studied are important in understanding our choices of energy sources.
In the Chapter 3 and 4 projects, we studied how major components of our economy are based
on burning of fossil fuels (petroleum, coal, and natural gas). But this is producing steadily
rising atmospheric CO2 levels that are contributing to climate change, sea level rise, and
other undesirable effects. Nuclear power is sometimes considered to be a solution to some of
these issues because generating electricity by using radioactive decay to produce steam for
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turbines does not involve any burning of fossil fuels (at least not directly). However, this
source of energy has its own problems, which are revealed by considering the properties of
exponential decay processes. There’s always a possibility of catastrophic damage to a nuclear
reactor and release of radioactivity into the environment, which would case damage to human
and other populations. Even if there is no major disaster of that sort, the waste products
of nuclear power remain radioactive for extended periods and hence are also dangerous for
humans and other life forms. Safe long-term disposal methods for those wastes have not been
developed as yet and this is another obstacle to using nuclear power for electricity generation
on large scales.
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