
MONT 105N – Analyzing Environmental Data
Chapter 10 Project

March 18, 2019

Introduction

The goals of this chapter’s project are:

• To introduce some basic features of the R statistics package. This is a much more extensive
and powerful piece of software than the statistical routines in Google Sheets or Excel. In
fact R is probably the go-to “industry standard” software for academic statisticians at the
moment.

• To see how R computes some descriptive statistics and graphics for understanding the “shape”
or “distribution” of a data set.

• To gain an intuitive understanding of the Central Limit Theorem, a basic result in statistics
that underlies the wide applicability of normally-distributed random variables.

Background on R – Getting Started

The instructions here are geared toward the Windows version of R. R is a free, open source package
and you can obtain a copy to run on your own computer, and there are Windows, Mac-OS, and
Linux versions available. These have the same functionality but slightly different interfaces.

On PC’s when you double-click the R shortcut from the standard desktop, you will launch
the R-GUI (graphical user interface) window. Inside this is a workspace window with a white
background. It only allows you to

• enter commands, and

• view numerical output.

It does not let you create integrated documents, and graphics are displayed in separate windows
within the R-GUI, as you will see.

You can print the workspace window or any graphics window at any time. Just highlight that
window and press the toolbar printer button.

To save your work, with comments and answers to questions (e.g. for the project report), I
recommend

• opening another editor window (either Word or NotePad are fine for this on Windows sys-
tems), and

• using it to create a text file that will be your permanent record of your work.

• When you have a result you want to save from the R workspace, copy both the input command
and the output and paste into the text file.

1



• Any time you want to add a comment to explain a calculation or answer a question, enter
that directly into the text file.

• Save that text file print it when you want a hardcopy (from Word or NotePad).

A First R Session

In this first session, you will basically work through some examples illustrating features of R and
some of the descriptive statistics we have talked about so far in the text. Keep a record of what
you do for future reference.

In its most basic form, R provides a command-driven “statistical calculator” in which you type
in data and commands to generate numerical and graphical output that are displayed. When you
have the R window open, note the > input prompt after the opening message. This is where you
should start.

(1) The following data set records systolic blood pressure readings from 15 adults (not a very
healthy group, on the whole!) First we need to get the systolic blood pressure readings into R so
that we can work with them. The basic way is to enter (after the > prompt):

bpdata <- c(172,140,123,130,155,148,138,129,137,161,123,152,133,128,142)

and press ENTER. Note: the < − is formed by typing the < and − characters right next to each
other. It is the assignment operator in R. This takes the data on the right and assigns it to the
name on the left. The c, followed by the list of numbers, separated by commas, is R’s way of
constructing an ordered list or vector. You should just get another input prompt if everything went
OK with this (error messages if not). If you did get an error, try again, and try to follow the above
exactly. You can verify that the numbers are entered correctly by typing in the name bpdata as a
command; the numbers will be displayed in a row.

(a) We can compute the mean y and standard deviation s of the data in R (in several different
ways!): Type in

ybar <- sum(bpdata)/length(bpdata)

mean(bpdata)

s <- sqrt(sum((bpdata - ybar)^2)/(length(bpdata) - 1))

sd(bpdata)

and press ENTER after each line to see the results. Note the way the sum function works in a very
nice way here—in the computation of ybar, we only need to put in the name of the data list; the
sum of all the elements is computed by default. Then in the computation of s, we can subtract
each entry of the bpdata vector from ybar as shown! Of course we will usually want now to use the
built-in functions mean and sd, but the first of each pair of computations shows how we can also
use more primitive functions in R when we need them. The command summary(bpdata) automates
the computation of the five number summary if you want to see that.

2



(b) Chebyshev’s theorem mentioned in Chapter 9 is a result about the distribution of data sets.
It says in a particular case that there will always be at least 75% of the numbers in a data set within
2 standard deviations of the mean. Let’s use R to check that this is true here. In its most basic use,
R can function as a simple numerical calculator.

upperb <- ybar + 2*s

lowerb <- ybar - 2*s

How many of the data values are in the range [y − 2s, y + 2s], though? We could just count by
hand, of course, with a data set this small. But R also contains a very rich collection of facilities for
selecting subsets of a data set and massaging data in various ways. Here is a basic way to select
the portion of the data set in the range we want:

middle <- subset(bpdata, bpdata <= upperb & bpdata >= lowerb)

length(middle)/length(bpdata)

(The first line picks out the subset of the data satisfying both of the inequalities; the second
computes the fraction of the whole data set contained in the “middle.”) Did Chebyshev’s theorem
“work” here?

(2) Now let’s look at a different data set. This gives the number of parasites found in each of a
sample of 100 individual foxes. The information is given there in table format:

Parasites 0 1 2 3 4 5 6 7 8

Foxes 69 17 6 3 1 2 1 0 1

So we want to create a data set containing 69 0 entries, 17 1 entries, etc. Clearly this is going to
be tedious and error prone if we do it the most basic way(!) Fortunately, R lets us construct lists
in more flexible ways besides just listing the entries. We can indicate how many times to repeat a
given value if we want, like this:

foxpar <- rep(c(0,1,2,3,4,5,6,7,8),c(69,17,6,3,1,2,1,0,1))

The rep stands for “repetition” here. Note that the first list inside the rep gives the values of the
number of parasites—the first row in the table format—and the second list gives number of times
each value appears in the data. The first list could also be abbreviated as 0:8 (R’s notation for a
list of successive integer values).

(a) To construct a relative frequency histogram for the number of parasites per fox in R, let’s
begin by entering

hist(foxpar)

The histogram will be generated in a separate graphics window. This is a “default” version of the
command. The hist command takes a number of options that control how the bins are selected
and how the histogram is drawn as well. You will often want to modify the default results. For
instance, looking at the output, how were the bins chosen here? Is that optimal for showing the

3



different numbers of foxes with each number of parasites? Suppose we want bins centered on the
integer values 0, 1, 2, 3, 4, 5, 6, 7, 8 as we did in other examples. We can put in an option to make R

do it that way too. The breaks option takes a list of values and makes those the boundaries of the
bins for the histogram:

hist(foxpar,breaks=c(-0.5,0.5,1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5))

How is this different and why is it better than the default way that R drew the histogram?
(b) To practice using the commands we talked about before, calculate y and s for this data set.

How many of the numbers were within two standard deviations of the mean in this case?
(c) The list of breaks for the histogram can be anything in R. What happens if you change the

command above to

hist(foxpar,breaks=c(-0.5,0.5,1.5,2.5,3.5,4.5,5.5,8.5))

(deleting the 6.5 and 7.5 break points, so we’re lumping together the counts for the values 6,7,8
parasites)? What is different about the new histogram that R drew in this case? Look at the graph
carefully: do the heights of the boxes still represent frequencies? (Hint: what they do represent
are densities that are computed by taking the frequency count and dividing by the width of the
box in each case. What is true if we add the areas of the boxes drawn this way? We will see other
reasons why this is a preferable way to draw histograms with unequal bin sizes later. ) If we really
want frequencies, we can make R do it that way:

hist(foxpar,breaks=c(-0.5,0.5,1.5,2.5,3.5,4.5,5.5,8.5),freq=TRUE)

However note that now R generates a warning message saying the AREAS in the plot are “wrong.”
Think about this. Why is the last box in this version of the histogram misleading if drawn this
way?

Background on Probability Distributions in R

The R package contains built-in functions for computing probability functions for the discrete ran-
dom variables we have discussed, plus functions for the probability density functions and cumulative
distributions of the standard types of continuous random variables. Here’s how it works. Each type
of random variable is covered by a family of 4 functions distinguished by a prefix letter d, p, q,
or r:

• d – the p.m.f. in the discrete case, or the p.d.f. in the continuous case,

• p – the c.d.f.

• q – the quantile function (it computes quartiles, deciles, percentiles; we’ll see examples of how
it is used later)

• r – random number generator (for sampling random values of a random variable with that
distribution)

4



Following the prefix letter comes the rest of the function name and the inputs needed to compute
the corresponding values.

Distributions of Sample Means

Work through the following example before and then follow the pattern here in the other parts of
question A below. You do not need to hand in any work for this preliminary discussion, just for
the parts of the question itself.

1. Begin by generating a list of 100 random numbers from a particular distribution.1 Use the
command:

x <- rexp(100,1/3)

to assign the result to the name x. We will think of this as a sample of values from that
distribution.

2. Plot the density histogram for this data set x using the command

hist(x,freq=FALSE)

This should look roughly like the part of the graph of the p.d.f. for positive y, reflecting the
fact that the random numbers are generated according to probabilities given by that density
function.

3. Our main goal is to understand what happens if we generate lots of such samples, find their
sample means, then consider the distributions of those sample means.

4. Here is one way to do this in R using a simple for loop. First we create space to store the
means of 1000 different random samples:

means <- array(1:1000)

Next, we generate 1000 different random samples, find the means of each of them, and store
them in the array created above:

for (i in 1:1000)

{

x <- rexp(100,1/3)

means[i] <- mean(x)

}

1This is a type of continuous random variable that we did not discuss in the main part of the text. It is one of the
exponential distributions from an example in the optional section §10.8. You will see roughly what its p.d.f. looks
like below even if you did not look at the optional section.

5



(Note: This could all be entered as one input line provided you leave spaces in the appropriate
places. However, I think it is more readable (and it is easier to identify typos if you happen
to make one) if you press ENTER at the end of each of the lines as you are typing this. If you
do it that way, you should note that R generates a new input prompt + each time, indicating
that you are still in the body of the for loop. The final } will close off the loop and take you
back to the > prompt.)

5. What does the distribution of the sample means look like? We can see that by generating a
frequency histogram for the data in the means array:

hist(means,breaks=20,freq=FALSE)

This should look completely different from the histogram showing the distribution of the
single sample above. In fact, what does this histogram remind you of?

6. If you said, “a normal p.d.f.,” good. If you said something different, go back and look again.

7. Now, which normal density is it? Well, by Theorem 10.36 from the text, if we have 100
sampled values Y1, . . . , Y100 from any distribution where E(Yi) = µ for all i, and V (Yi) = σ2

for all i, and

Y =
1

100
(Y1 + · · ·+ Y100)

is the sample mean, then we will have

E(Y ) = µ

and

V (Y ) =
σ2

100
,

so the SD of the sample means will be σ/10. For the exponential random variables we are
looking at, we will take it on faith that µ = 3 and σ = 3. Hence the expected value of the
sample means is also 3 and the SD of the sample means is 3/10 = .3.

8. Let’s overlay that normal density and see how well things match:

curve(dnorm(x,3,.3),add=TRUE)

(The dnorm is the normal p.d.f. The 3 is the µ and the .3 is the σ. You will use other normal
densities in the questions below. They are specified in the same way.) This should match
quite well (not perfectly, though, since there will always be variation in the sampled values
as we know from the project for Chapter 9).

6



Assignment

Repeat the parts of the worked example below for the means of 1000 random samples of size 100
from each of the following distributions. Note: In each case to find the appropriate normal density
curve, you will need to recall facts about expected values and variances of the Yi individually, then
use Theorem 10.36.

(A) A uniform distribution with min = 4 and max = 10. (These are the endpoints of the
interval where the uniform density is different from zero.) Use runif(100,4,10) to generate
a random sample of size 100 from this uniform distribution. See Theorem 10.33 in the text for
the appropriate µ and σ2 in this case. Then apply Theorem 10.36 as in the example above.

(B) A Poisson distribution with λ = 2. From the discussion in the text, we know µ = λ and
σ2 = λ for Poisson random variables. The appropriate R function to generate the samples of
size 100 is rpois(100,2).

What is happening in each case? Explain. Is the distribution of the sample means approximately
normal every time?

7


