
MONT 107Q – Thinking About Mathematics
Problem Set 4

due: 5:00pm on Monday, April 10

Background

As we said in class on Wednesday, April 5, Viète’s work on algebra was, in some ways,
a step backward from the work of Islamic mathematicians like Al-Khwarizmi and others.
The Islamic mathematicians had what looks mostly like a more modern understanding
of quadratic and higher-degree equations because they did not insist on the geometric
interpretations of terms and they did require the homogeneity condition that was a key
idea for Viète. On the other hand, Viète’s work did represent a real advance in other
ways, in particular in the use of symbolic parameters (written as letters) in algebraic
equations. In addition to the Introduction to the Analytic Art that we are reading, he
published many other works including one called the Zetetics (after the “zetetic” phase of
analysis in studing a mathematical problem). In this work, he reconsidered many of the
Propositions proved by Diophantus and showed (in effect) that Diophantus’ methods were
actually general, even though Diophantus gave only a single numerical example. In this
problem set, you will look at two of those reworkings and then derive what are now called
Viète’s equations relating the roots and the coefficients of a polynomial.

I. From the First Book of Viète’s Zetetics: [Compare with Diophantus I.1 (see previous
handout)] Given a difference of two sides and their sum, find the sides. Let the difference
of the two sides be given as B and the sum given as D. It is required to find the sides. Let
the lesser side be A. The greater will then be A + B and the sum of the sides is 2A + B
and this equals D. By antithesis, 2A = D − B, and one side is A = (D − B)/2 and the
larger one is A + B = (D + B)/2. ... Indeed: The half sum of the sides minus the half

difference is equal to the lesser side and the greater is the lesser plus the difference.

A) How does the statement in italics relate to what we said when we discussed Diophantus
I.1? Discuss the similarities and the differences between this and what Diophantus
does.

B) What are the sides if the difference is 80 and the sum is 131? (It seems that Viète is
not bothered at all by fractions(!))

II. From the Fourth Book of Viète’s Zetetics: [Compare with Diophantus, II.8 (see previous
handout)]. To find two squares that sum to a given square. Let the given number be
F square. It is required to find two squares that sum to the given F square. Let any right
triangle be given with sides B, D and hypotenuse Z. Among the triangles similar to this
one, there will be one with hypotenuse F . Therefore the squares from B in F

Z
and D in F

Z

will add to equal the given F square.
A) In the explanation, Viète says that one way to get the numbers B, D, Z is to use the

formulas
B = R2

− S2

D = 2RS

Z = R2 + S2
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for some numbers R > S. Show that these formulas always give the lengths of the
sides of a right triangle. (Hint: Look at the Appendix in the curious incident of the

dog in the nighttime from last semester!)
B) To use the formulas in part A, we would look for R, S to make Z = R2 + S2 in

some “easy” ratio to the F that is given. For instance, Viète gives the example
F square = 1002 and says to choose R = 4, S = 3. What are the B, D, Z then?
What is the proportionality factor you need to make a similar triangle with hyptenuse
100 and what are the squares that sum to 1002 you obtain?

III. (“Viète’s Formulas”).
A) Let f(x) = x3+Ax2+Bx+C be a cubic polynomial that factors as f(x) = (x−c1)(x−

c2)(x−c3) Show (by expanding out the factored form and comparing coefficients after
collecting powers of x) that

A = −(c1 + c2 + c3)

B = c1c2 + c1c3 + c2c3

C = −c1c2c3

B) What are the corresponding formulas for the coefficients A, B, C, D in polynomials of
degree 4 in terms of the roots c1, c2, c3, c4:

f(x) = x4 + Ax3 + Bx2 + Cx + D = (x − c1)(x − c2)(x − c3)(x − c4)?

C) (Extra Credit) What is the general pattern here? How do you get the coefficient of
xn−k in a polynomial of degree n if the roots are c1, . . . , cn?
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