MONT 107Q — Thinking about Mathematics
Discussion — Descartes and Coordinate, or “Analytic” Geometry
April 19 and 21, 2017

Background

In 1637, the French philosopher and mathematician René Descartes published a pamphlet
called La Géometrie as one of a series of discussions about particular sciences intended
apparently as illustrations of his general ideas expressed in his work Discours de la méthode
pour bien conduire sa raison, et chercher la vérité dans les sciences (in English: Discourse
on the method of rightly directing one’s reason and searching for truth in the sciences).
This work introduced other mathematicians to a new way of dealing with geometry. Via
the introduction (at first only in a rather indirect way) of numerical coordinates to describe
points in the plane, Descartes showed that it was possible to define geometric objects by
means of algebraic equations and to apply techniques from algebra to deduce geometric
properties of those objects.

He illustrated his new methods first by considering a problem first studied by the ancient
Greeks after the time of Euclid:

Given three (or four) lines in the plane, find the locus of points P that satisfy the relation
that the square of the distance from P to the first line (or the product of the distances from
P to the first two of the lines) is equal to the product of the distances from P to the other
two lines.

The resulting curves are called three-line or four-line loci depending on which case we
are considering.
For instance, the locus of points satisfying the condition above for the four lines

xr+2 = 0,
r—1 = 0,
y+1 =0,
y—1 = 0

is shown at the top on the back of this sheet. The point shown in black is P = (1,1). Note
that it satisfies the defining condition the product of the distances from P to the first two of
the lines is equal to the product of the distances from P to the other two lines since it lies on
the line x — 1 = 0 so the first product is zero, and it lies on the line y — 1 = 0, so the second
product is also zero.

The Greek mathematician Apollonius (ca. 262 BCE - ca. 190 BCE) considered this
problem in Book III of his masterwork called the Conics. He showed via extremely elaborate
“synthetic” (i.e. Euclid-style) proofs that both the three- and four-line loci are conic sections
— the ellipses, hyperbolas, and parabolas that are obtained as plane sections of a cone. This
lines in Figure 1 give a hyperbola; the other conics can be obtained by varying the positions
of the lines, making them meet at non-right angles, etc.



Figure 1: A four-line locus

Descartes actually learned about this work by reading an account given by the later Greek
mathematician Pappus (ca. 290 - 350 CE), whose work we have encountered previously.
Pappus’ Mathematical Collection preserved much of the earlier work of Greek mathematicians
and earlier thinking about the complementary roles of analysis and synthesis in mathematics.
This work by Pappus was translated into Latin in the 16th century and reintroduced much
Greek advanced mathematics to Europe around the time of F. Viete, and slightly later,
R. Descartes. With his “analytic” geometry in the plane, Descartes was able to derive
Apollonius’s results in a much easier way, and he also showed how to solve analogous problems
when the locus was described by any number > 3 of lines.

Today, using our knowledge of coordinate geometry, we want to understand what Descartes
did, why it was such an advance, and why it essentially (re)-united algebra and geometry.

Questions

(A) A line L in the coordinate plane is given by the equation Az + By + C = 0. Let
Q = (z0,90) be a point. The (perpendicular) distance from L to @ is given by
d(L,Q) =
(L@ == 5

Using this formula, determine the distance from the point
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to each of the lines given above (the ones that produce the plot at the top of the page).
Deduce that @) lies on the four-line locus for these lines.
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(B) Use part A to prove Apollonius’s result that starting from any three or four lines

the locus of points P = (x,y) such that the square of the distance from P to line L,
is equal to the product of the distances from P to Lo and Ls is defined by an algebraic
equation of total degree 2 in the coordinates of the point P — that is, an equation of
the form:

Dx? + Exy+ Fy* + Gr + Hy + 1 = 0. (1)

for some real numbers D, E, F,G, H,I (after possibly ignoring the absolute values).
Do the same for the locus of points P = (x,y) such that the product of the distances
from P to Ly and to Ly is equal to the product of the distances from P to Ls and to
Ly.

Give examples of equation of the form (1) in part (B) defining each of the three conic
sections — ellipse, parabola, hyperbola. Also, what is the locus of points defined by the
equation z? — y? = 0?7 What about 22 + y? = 0?7 What about 2% + y* + 1 = 07



