MONT 107Q – Thinking About Mathematics Discussion – An Old Babylonian Mathematical Table February 8, 2017

A number of Old Babylonian tablets with information equivalent to the following table of base 60 numbers have been found. This was clearly a standard part of the Babylonian mathematicians' "calculation toolkit." To make things simpler for a first encounter with "the real thing," the convention for the cuneiform number symbols is: in the base 60 digits, $\langle = 10 \text{ and } \rangle = 1$. Spaces separate each base 60 digit from the next one. The first number on the row is added just to help us identify the rows in the table.

1	$\bigvee\bigvee$	<<<
2	$\vee\vee\vee$	<<
3	$\vee\vee\vee\vee$	$<$ \lor \lor \lor \lor
4	\vee \vee \vee \vee	$< \lor \lor$
5	\vee \vee \vee \vee \vee	<
6	$\vee\vee\vee\vee\vee\vee\vee\vee$	$\lor\lor\lor\lor\lor\lor\lor$
7	\vee \vee \vee \vee \vee \vee \vee \vee	$\lor\lor\lor\lor\lor\lor$
8	<	\vee \vee \vee \vee
9	$<$ $\lor\lor$	\vee \vee \vee \vee
10	$<$ \lor \lor \lor \lor	\vee \vee \vee
11	$<$ \lor \lor \lor \lor \lor	$\lor\lor\lor$ $<<<<\lor\lor\lor\lor\lor$
12	$<$ \lor \lor \lor \lor \lor \lor	\vee \vee \vee
13	<<	\vee \vee \vee
14	$<< \lor \lor \lor \lor \lor$	VV <<<
15	$<< \lor \lor \lor \lor \lor \lor$	$\vee \vee << \vee \vee \vee \vee \vee$
16	$<<$ \lor \lor \lor \lor \lor \lor	$\vee \vee < \vee \vee \vee <<$
17	<<<	$\vee\vee$
18	<<< \V	V <<<<< VV <<<
:		
•		

Thus for instance, the 6th row would translate to base 60 numbers expressed like this in our notation.

$$(8)_{60}$$
 and $(7;30)_{60}$

(note the space between the $\lor\lor\lor\lor\lor\lor\lor\lor$ and the <<< on the right on this row). The equivalent base-10 numbers are

8 and
$$7 + \frac{30}{60} = 7.5$$

Figuring out the table

A) Translate all the table entries into base 10 numbers like this.

- B) Then figure out what the table is and how the numbers in the second column relate to the numbers in the first. Also, is there any ambiguity involved? *Hint:* A good way to approach this is to interpret the numbers in the left column as whole numbers. However, the ones on the right are best understood as base-60 *fractions*, which you will convert to decimal numbers. (Where does the *sexagesimal point* or the decimal point go?)
- C) Babylonian mathematicians would have used a table like this to compute things like the base-60 form of fractions like 5/32. How could this table (and perhaps information from another table) be used for that?