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Abstract. For over two millennia, Aristotle's logic has ruled over the
thinking of western intellectuals. All precise theories, all scientific

models,
even models of the process of thinking itself, have in principle

conformed to the straight- jacket of logic. But from its shady beginnings

devising gambling strategies and counting corpses in medieval London,
probability theory and statistical inference now emerge as better
foundations for scientificmodels, especially those of the process of thinking
and as essential ingredients of theoretical mathematics, even the
foundations of mathematics itself. We propose that this sea change in our
perspective will affect virtually all of mathematics in the next century.

1. Introduction

This paper is based on a lecture delivered at the conference \"Mathematics
towards the Third Millennium\", held at the Accademia Nazionale dei Lincei,
May 27-29, 19991. I would like to congratulate the seven very enterprising
and very energetic Professors from the University of Rome, Tor Vergata,
all women, who conceived and orchestrated that meeting. I am especially
impressed by their achievement in getting a dozen mathematicians to speak,
not about the latest advances in their field but to address larger issues and
talk about ideas as well as theorems. Their invitation tempted me to try
to formulate more clearly some ideas that I've been trying to put together
for the last ten years. I could not resist the great fun of formulating a long
term view out of them which is, no doubt, simplistic and which certainly
stretches beyond my area of expertise. To quantify the hubris of this talk, let
me borrow Karen Uhlenbeck's statistic defined in her talk at this conference:
I wish to make assertions which cover some 2400 years; take as a yardstick
the length of my own research experience about 40 years; thus the hubris

quotient of this talk is 60!

lrThis paper is reproduced here with the permission of the Accademia. References
belowto \"other talks\" all refer to this conference.

197



198 DAVID MUMFORD

This paper is a meant to be a polemic which argues for a very fundamental

point: that stochastic models and statistical reasoning are more relevant i) to
the world, ii) to science and many parts of mathematics and iii) particularly
to understanding the computations in our own minds, than exact models and

logical reasoning. My points will be laid out as follows: in
\302\2472,

I will argue
that all mathematics arises by abstracting some aspect, of our experience and

that, alongside the mathematics which arises from objects and their motions
in the material world, formal logic arose, in the work of Aristotle, from

observing thought itself. However, there can be other ways of abstracting
the nature of our thinking process and one of these leads to probability and
statistics. In

\302\2473,
I will give a quick look at the 2400 years since Aristotle,

noting some high points in the development of these two strands. Precise

logic-based models and precise logic-based mathematics have held the high
ground and deeply influenced our thinking. Stochastic theories emerged
much more slowly and only in the last century have begun to show their
real depth. In

\302\2474.
T want to look at the standard reductionist approach to

probability. The basic object of study in probability is the random variable
and I will argue that it should be treated as a basic construct, like spaces,
groups and functions, and it is artificial and unnatural to define it in terms
of measure theory. Tn

\302\2475,
we pursue this point further and, building on

inspiring work of Jaynes and Freiling, propose that probabilities and random
variables can be built into the foundations of mathematics, resulting in
a more intuitive and powerful formalism. In

\302\2476,
we look at the impact

of stochastic models on mainstream mathematics, especially on the theory
of ordinary and partial differential equations. We argue that stochastic
differential equations are more fundamental and relevant to modeling the
world than deterministic equations. Finally, in

\302\2477,
we return to modeling

thought and examine recent stochastic approaches to artificial intelligence,
vision and speech. We ask: do these offer a better chance of success, e.g. at

duplicating human abilities with a computer, than logic based approaches.
I believe so, although this is not yet clear.

I also have to confess at the outset to the zeal of a convert, a born-again
believer in stochastic methods. Last week, Dave Wright reminded me of the
advice I had given a graduate student during my algebraic geometry days
in the 70's: 'Good grief, don't waste your time studying statistics - it's all
cookbook nonsense'. I take it back! I would like to warmly thank some of
the many people who have helped me either through discussions of these
ideas or with the details of this article, especially Shlomo Sternberg, Rohit

Parikh, Persi Diaconis, Ulf Grenander, Stuart Geman, David Fowler, and

Stephen Stigler.



THE DAWNING OF THE AGE OF STOCHASTICITY 199

2. The taxonomy of mathematics

I want to begin by setting probability and statistics in their places as a part
of mathematics. First, T want to quote a definition of what is mathematics
due to Davis and Hersh in their very penetrating book \"The Experience of
Mathematics\" (Davis-Hersh, 1980, p.399): 'The study of mental objects with

reproducible properties is called mathematics.' I love this definition because
it doesn't try to limit mathematics to what has been called mathematics in
the past but really attempts to say why certain communications are classified
as math, others as science, others as art, others as gossip. Thus reproducible
properties of the physical world are science whereas reproducible mental

objects are math. Art lives on the mental plane (the real painting is not
the set of dry pigments on the canvas nor is a symphony the sequence of
sound waves that convey it to our ear) but, as the post-modernists insist,
is reinterpreted in new contexts by each appreciator. As for gossip, which
includes the vast majority of our thoughts, its essence is its relation to a

unique local part of time and space.

Expanding on the Davis and Hersh definition, one can ask what are the
various primitive elements of human experience which lead to the diverse types
of reproducible mental objects, which in turn embody the great divisions
of mathematics? The classical subdivisions of mathematics are geometry,
algebra, and analysis. Let's look at each of them and try to name the

corresponding experiences and the resulting mental objects.

Geometry is the most obvious: an infant at the age of 3-6 months is working
intensely at integrating the two senses of vision and touch with its own simple
muscular movements, learning that moving its hand and arm appropriately
leads to the sensation of gripping the rattle and the sight of its displacement.
Put succinctly, let me say that the perception of space (through senses and
muscular interaction) is the primitive element of our experience on which

geometry is based. One of the simplest mental objects this leads to is 'the
stretched string' as Davis and Hersh call it, the origin of ruler and compass
constructions. The paradigmatic object of its formal study is a space M
made up of points with various sorts of structure.

Analysis, I would argue, is the outgrowth of the human experience of force
and its children, acceleration and oscillation. An example is the falling
of the apple onto Newton's head. This primitive experience gives rise to
the paradigmatic mental object consisting of a function and its derivatives,
originally functions describing some physical quantity evolving in time.

Algebra seems to stem from the grammar of actions, i.e., the fact that we

carry out actions in specific orders, concatenating one after the other, and
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making various 'higher order' actions out of simpler more basic ones. The

simplest example, the one first acquired by children, is counting itself, which

may be part of the grammar of dexterous manipulations if piling pebbles in

heaps is used or part of the grammar of language when words are used. The

paradigmatic mental object here is a set of things with a law of composition.

Enough for the 'classical' divisions of mathematics. I believe there is a
fourth branch of human experience which creates reproducible mental

objects, hence creates math: our experience of thought itself through our
conscious observation of our mind at work. Instead of observing the world and

finding there the germs of geometry and analysis, or observing our actions
and finding algebra, we observe our mind at work. In the hands of
Aristotle, this lead to the creation of formal logic in which propositions are the
basic mental objects. Logic was the reproducible formalization constructed
to model the raw stream of thoughts passing through our consciousness.

But is this right? The alternate view for which I will argue is that thought is
the weighing of relative likelihoods of possible events and the act of sampling
from the 'posterior', the probability distribution on unknown events, given
the sum total of our knowledge of past events and the present context. If
this is so, then the paradigmatic mental object is not a proposition, standing
in all its eternal glory with its truth value emblazoned on its chest, but the
random variable x, its value subject to probabilities but still not fixed. We
will focus on random variables in

\302\2474.
The simplest example where human

thinking is clearly of this kind may well be the case where the probabilities
can be made explicit: gambling. Here we are quite conscious that we are

weighing likelihoods (and even calculating them if we are mathematically
inclined). If we accept this, the division of mathematics corresponding to
this realm of experience is not logic but probability and statistics.

3. A brief history of logic vs. statistics

It is entertaining to make a timeline and trace some of the high points in the
evolution of these two conflicting views of the nature of thought. Starting
in the high period of ancient Athens, here are some quotes from Plato, put
into the mouth of Socrates:

If Theodorus, or any other geometer, were prepared to rely on

plausibility when he was doing geometry, he'd be worth

absolutely nothing. (The dialog with Theaetetus, 162e, c. 360 B.C.)
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Tn the Republic VII, 529c, Plato goes a bit far even for the tastes of the purest
contemporary mathematicians by arguing that astronomers are better off
not looking at the stars (?!):

The sparks that paint the sky, since they are decorations on a
visible surface, we must regard, to be sure, as the fairest and
most exact of material things; but we must recognize that they
fall far short of the truth .... both in relation to one another and
as vehicles of the things they carry and contain. These can be

apprehended only by reason and thought, but not by sight
It is by means of problems, then, as in the study of geometry,
that we will pursue astronomy too, and vie will let be the things
in the heavens, if we are to have a part in the true science of
astronomy-

In the same vein, it is interesting that some of the worst mistakes made

by Aristotle arose because, although he wrote extensively about biology, he
never consulted practising physicians such as Hippocrates and his school for
real data about the human body. Thus he believed that the heart, not the

brain, was the seat of thought, something readily disproven by observing
the effects of trauma to the brain (sec the excellent article by Charles Gross

(1995)).

Skipping ahead to the Renaissance. Cardano (1500-1571) is a remarkable

figure. On the one hand, because of his book Ars Magna. 1545, he is often
called the inventor of i. He appears to be a superb practitioner of the
formalism of algebra, following the consequences of its logical rules a bit
further than those before him. But he was also an addicted gambler and
wrote the first analysis of the laws of chance in Liber de Ludo Aleae, which,
however, he was ashamed to publish! Tt did not appear until 1663, about the
time Jacob Bernoulli began to work. Tn the 17th century, we find Newton
and Leibniz squarely in the logic camp, Newton believing that Euclidean

geometry was the only reliable language for trustworthy proofs and Leibniz

foreshadowing modern AI in his PhD thesis De Arte Combinatoria. In
the stat camp, we have true empiricists beginning to gather and analyze
statistics. Graunt assembled his mortality tables in London (see figure 1
from the year 1665) and Jacob Bernoulli proved the law of large numbers,
justifying the use of empirical estimates.

The Reverend Thomas Bayes lived in the 18th century (1701 or 1702-1761).
He argued for the introduction of o priori (or 'prior') probabilities,
probabilities that one assigns to unknown events based on experience of related
but not identical events or just expressing a neutral agnostic view. These

probabilities should then be modified by new observations, leading to better
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Figure 1. Graunt was one of the first people to realize the
usefulness of empirical data: here is a week in the life and
death of medieval London (photograph courtesy of Stephen
Stigler).

and better a posteriori probabilities as data is accumulated. To demonstrate
the central importance of Bayes's work, let me describe the lead article in
the Business Section of the L.A. Times of 10/28/96. It featured a picture
of Bayes with the headline \"The future of software may lie in the obscure
theories of an 18th century cleric named Thomas Bayes\". The article went
on to say, \"Asked recently when computers would finally begin to
understand human speech, Gates began discussing the critical role of 'Bayesian
systems'. ... Is Gates onto something? is this alien-sounding technology
Microsoft's new secret weapon?\" In speech recognition, the prior probabilities
may be generic models of human speech and the posterior probabilities the
much more accurate model of one person's speech after training. Although
the Times labelled them 'obscure theories', a growing school of researchers

today (myself among them) believes Bayesian statistics is the key to the
effective use of statistical inference in complex situations.
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Figure 2. A crowning achievement in the reductionist

approach to the foundations of mathematics. The above
theorem occurs some thousand odd pages into the
monumental work Principia Mathematica of Russell and Whitehead,
building purely on logic and set theory. Reproduced with

permission of Cambridge University Press.

Gauss is interesting because of his immense abilities both in pure logical
deduction and in applied statistics. Indeed, he invented the method of least

squares to deal with redundant but inaccurate data, leading to the

rediscovery of Ceres, and proved the central limit theorem which justified the
method. Perhaps his most famous hypothesis testing experiment was to
test the euclidean nature of our 3-dimensional world. He did this by
measuring the three angles in the triangle formed by the 3 peaks of Brocken,
Hohehagen and Inselsberg: it came out 14.85 arc-seconds higher than it,
but within experimental error of it. The logic camp flourished in the rest
of the 19th century, with Dedekind's cuts to arithmetize the real numbers,
Boole's logic, Frege's formalization of predicate calculus and Cantor's
formalization of set theory. It is not uninformative to reproduce here a high
point of this school: Russell and Whitehead's demonstration that 1+1=2
(this is Theorem 110.643 of Principia Mathematica). See figure 2 and note
their comment on the result in the next paragraph! But the gathering of

empirical statistics also flourished in the 19th century, notably in the hands
of Francis Galton. who liked to measure so much about people that he is
not now considered very 'politically correct'2.

Moving to our century, I think the most significant trend has been the

development of more complex and truly interesting probability models with
much deeper applications to the sciences. Thus Galton was pretty much
limited to fitting Gaussian distributions to scalar or low-dimensional data
sets. A huge leap was made when Gibbs introduced very high-dimensional

2A personal note: my grandfather, Alfred A. Mumford, was a physician at Manchester
Grammar School for many years and fascinated by the correlations he observed in the
meticulous measurements and health records he made of the boys. (Mumford-Young
1923) is cited in the classical statistics textbook of Snedecor and Cochran.



204 DAVID MUMFORD

probability models in physics, e.g. for gases, starting statistical mechanics.

Keynes wrote both on the foundations of probability and of economics and

sought to clarify what was the correct use of probabilistic reasoning in the
real world. Wiener applied stochastic methods to signal prediction and
control theory. Shannon applied stochastic methods to data compression
and identified the key role played by the entropy of a probability distribution.
Grenander applied stochastic methods first to algebraic structures and later
to the patterns they create in the world, especially in vision. All these

together have given us powerful tools and inspiring examples of applied
stochastic methods.

While all these really exciting uses were being made of statistics, the

majority of statisticians themselves, led by Sir R.A. Fisher, were tying their
hands behind their backs, insisting that statistics couldn't be used in any
but totally reproducible situations and then only using the empirical data.
This is the so-called 'frequeritist' school which fought with the Bayesian
school which believed that priors could be used and the use of statistical
inference greatly extended. This approach denies that statistical inference
can have anything to do with real thought because real-life situations are

always buried in contextual variables and cannot be repeated. Fortunately,
the Bayesian school did not totally die, being continued by DeFinetti, E.T.

Jaynes, arid others. I will describe some of Jaynes's ideas below. The new

applications of Bayesian statistics to vision, speech, expert systems and
neural nets have now started an explosive growth in these ideas.

4. What is a 'random variable'?

This is actually a quote from David Kazhdan: when he transplanted
Gel'fand's seminar to Harvard, he called it the 'Basic Notions Seminar' and
asked everyone to describe a notion they knew best which everyone should
learn. He gave Persi Diaconis the topic which is the title of this section. I
like his idea: a random variable is not such an easy thing to describe. It is
the core concept in probability and statistics and, as such, appears in many
guises. Let's make a list:

\342\200\242 There are empirical random variables. These arise, for example, by
taking a sample of people and tabulating their heights and weights:
taking a random image and measuring the intensity of its pixels;
taking

a sample of stocks and tabulating their prices; throwing a dart at
a dart board and measuring where it lands.

\342\200\242 There are elementary random variables. For example, a random

sample
from a finite set with the uniform distribution; a random normally

distributed real number; a random sample from Brownian motion.
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\342\200\242 There are truly complex random variables. One example would be
the solution of a stochastic PDE with a white noise driving term.
Another would be a random manifold created by some construction

using elementary random elements of some kind. Gromov described
some of these in his lecture.

\342\200\242 A doctor's diagnosis can be viewed as a random sample from his

posterior probability distribution on the state of your body, given
the combination of a) his personal experience, b) his knowledge from

books, papers and other doctors, c) your case history and d) your
test results. See the very influential article (Lauritzen-Spiegelhalter
1988).

\342\200\242 A novel can be viewed as a random sample from the author's posterior
probability distribution on stories, conditioned on all the things the
author has observed or learned about the nature of the real world.
This will be developed in the last section.

\342\200\242 It can be viewed as an undefined operation in the axiomatization of
mathematics: see the next section.

\342\200\242 Perhaps an observation in quantum mechanics is a 'non-commutative
random variable\", if we use the perspective A. Connes discussed in

his talk?

When probability is built, on top of measure theory, the usual formal
definition of a random variable with values in a set X is that it is a measurable
function x : Q, \342\200\224> X from a probability space fi to X. The probability space
itself, however, usually plays almost no role and x acts as though it is a

floating member of the set X (like a generic point in algebraic geometry).
Thus, i) for empirical random variables, Vt is essentially unknowable; ii) for
the elementary random variables, Q = X; iii) for the complex random

variables, Q is some big product of the probability spaces from which all the
random elements in the construction have been drawn; iv) for the novelist
or doctor, il, is the full probability model that he/she has constructed of how
the world works.

There are two approaches to developing the basic theory of probability. One
is to use wherever possible the reduction to measure theory, eliminating the

probabilistic language. Then Q is dropped and X is endowed with the
measure p(x) or p(x)dx given by the direct image under the map x of the

probability measure on il. The other is to put the concept of 'random
variable' on center stage and work with manipulations of random variables
wherever possible. Here is one example contrasting these two styles.

Consider the concept of infinite divisibility' (ID) of a real-valued random
variable x. One can be classical and denote the probability density of x by
p(x). Then x is ID if, for every n, there is a probability density qn(x) such
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that p = qn * \342\200\242\342\200\242\342\200\242* qn (n factors qn). Alternately, one can say that, for every
n, x ~ yi H \\-yn where yi are independent identically distributed random
variables (and ~ means having the same law).

This is little more than a simple change of notation but consider what

happens when you state the Levy-Khintchine theorem in the two corresponding
ways. The first way of stating this theorem says that x is ID if and only if
the Fourier transform

p(\302\243)
of p(x) can be written:

m = e^-he2-c/(e\302\253\302\273-l-^)^(\302\273)_

The second way writes the same condition directly in terms of the random
variable x as follows:

x ~ o + tenormai + c /.(^i
~~convergence factor Ci).

where abnormal is a standard normal variable and {xt} are a Poisson process
from a density v. Now these look quite different! For my part, I find
the second way of stating the Levy-Khintchine theorem infinitely clearer:

making the random variables explicit tells you the real stochastic meaning
of the result.

5. Putting random variables into the foundations

The reductionist approach defines random variables in terms of measures,
which are defined in terms of the theory of the reals, which are defined in
terms of set theory, which is defined on top of predicate calculus. I'd like
to propose instead that it should be possible to put random variables into
the very foundations of both logic and mathematics and arrive at a more

complete and more transparent formulation of the stochastic point of view. I
do not have a complete formulation of this, but a sketch which draws on two
sources I find very provocative. The first is the development by E.T. Jaynes
of the foundations of Bayesian probability and statistics (Jaynes 1996-2000);
the second is a beautiful stochastic argument due to Christopher Freiling to

disprove the continuum hypothesis (Freiling 1986).

First. Jaynes: as we have seen, the probability space U needed for the random
variables in applications like medical diagnosis is impossible to pin down

precisely. Too many fragments of experience may guide the physician and
we can never make his/her probability table explicit. This problem was at
the root of the frequentist's complaint about Bayesian methods. Jaynes has.
I believe, the most convincing answer. His theory starts with the assumption
that agents like us assign to various events A plausibilities which lie in some
unknown linearly ordered set, call it VI. In fact, we assign plausibilities not

only to events by themselves, but also to conditional events - if B is known
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to happen, then what is the plausibility of A as well being true? Denote
this plausibility by

p{A\\B) \342\202\254 VI.

Jaynes's result is that with a few reasonable axioms, one can deduce that
there is an order isomorphism VI = [0,1] under which p becomes a

probability distribution on the algebra of ^4's (in particular, p(A\\B) = p(A A

B)/p{B)). We may summarize this result as saying that probabilities are
the normative theory of plausibility, i.e., if we enforce natural rules of
internal consistency on any home-spun idea of plausibility, we end up with a true

probability model. For details, see his fascinating book (Jaynes 1996-2000,
chapters 1,2) which apparently is going to finally appear posthumously.

This leads to the following proposal for a stochastic predicate calculus. It
should have the syntax of standard predicate calculus except that we have
two kinds of variables in it: the ordinary predicates and constants and
quantifiable free variables x but also a set of random constants x. In addition,
it comes with a truth value function p mapping all formulas F without free
variables to real numbers between 0 and 1. If the formula F has only
ordinary variables in it, then p(F) \342\202\254 {0,1}. Formal semantics for this theory
would make the random constants functions on probability spaces so that a
formula would define a subset of the product of these spaces, hence have a

probability.

Stochastic formal number theory would be expressive enough to add an
axiom of continuity for p:

p (3nF(n)) = \\.u.b.mp((3n < m)F_(n)).

We also want axioms giving us the basic elementary random variables. Thus
if M is the predicate defining natural numbers, Bernoulli random variables
are given by the meta-axioms:

(Vo \342\202\254 Vf){3xa) 3 M{xa) A b(2a = 0) = 1 - a] A b(*a = !) =
<\302\273]\342\200\242

In fact, one wants countable families of independent Bernoulli variables. In
the same vein, the basic axiom of stochastic analysis should be the existence
of the continuum defined by i) a predicate C, ii) a linear ordering < (ci, C2) of
numbers ci,C2 for which C(c) is true, iii) arandoms0 satisfyingp(C(xq)) = 1,
and iv) finally an axiom:

(Va EVla^ 0, l)(3!c) 3 C{c) A [p(< (z0,c)) = o]

In english, what we have in mind is that we can order the continuum in such
a way that its one-sided intervals give all possible probabilities between 0
to 1 exactly once, i.e., loosely speaking, a continuum is exactly a thing you
can throw darts at. The dart game (formally, Lebesgue measure on (0,1)) is

given by the basic random variable Xq, which connects syntactic real number
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variables to semantic plausibility value variables through the above axiom.
This embeds measure theory into the very foundations of the theory.

This leads us to the stunning result of Christopher Freiling (1986): using the
idea of throwing darts, we can disprove the continuum hypothesis. Why his
theorem is not universally known and considered on a par with the results of
Godel and Cohen. I do not know. Here is the argument in classical language
(see figure 3). Two dart players independently throw darts at a dartboard. If
the continuum hypothesis is true, the points P on the surface of a dartboard
can be well-ordered so that for every P, the set of Q such that Q < P, call
it Sq, is countable. Let players 1 and 2 hit the dart board at points Pt arid

P2. Either Pi < P2 or P2 < P\\. Assume the first holds. Then Pr belongs to
a countable subset Sp2 of the points on the dartboard. As the two throws
were independent, we may treat throw 2 as taking place first, then throw 1.
After throw 2, this countable set Sp2 has been fixed. But every countable set
is measurable and has measure 0. Thus the probability of throw 1 landing
on Sp2 is 0. The same argument shows that the probability of P2 landing
on Sp, is 0. Thus almost surely neither happened and this contradicts the

assumption that the dartboard is the first uncountable cardinal!

So what is 'wrong' with this? We have treated random variables, throws
of the dart, as real things! If we try to rewrite this argument in classical
measure theory, we will need to assume that the graph of the well-ordering
is measurable, which, of course, should not be done. So do we throw out the

proof? Freiling used the argument to motivate a new axiom of set theory
which disproves the continuum hypothesis. T believe we should go much
further: his 'proof shows that if we make random variables one of the basic
elements of mathematics, it follows that the C.H. is false arid we will get
rid of one of the meaningless conundrums of set theory. The continuum

hypothesis is surely similar to the scholastic issue of how many angels can
stand on the head of a pin: an issue which disappears if you change your
point of view.

This calls for the most difficult part of this proposed reformulation of the
foundations: we need to decide how to define stochastic set theory. Clearly
we must drop either the axiom of choice or the power set axiom. But the
existence of random objects is a sort of axiom of random choice and my
belief at this point is that it is better to drop the power set axiom. What
mathematics really needs, for each set X, is not the huge set 2X but the set
of sequences X^ in X. Moreover, since p{xJQ \342\202\254 A) \342\202\254 VI must be defined for

every subset A of C, it is necessary that every definable subset of C is
measurable. This is not my area but it seems to me that the results of (Shelah
and Woodin, 1990) make this not obviously inconsistent or unworkable! It
would be exciting to pursue this approach.
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FIGURE 3. Two dart players face off. This led C. Fretting to
his argument against the continuum hypothesis (drawing by
I. Trotts).

6. Stochastic methods have invaded classical
mathematics

It may be useful to look at the degree to which many areas of classical
mathematics have been transformed and deepened by the use of stochastic
methods.
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Graph theory is a clear example from the area of combinatorics. The invasion
started with Erdos's introduction of random graphs with a fixed number
of vertices and edges, which led to the beautiful discovery of the phase
transition phenomenon: that the random graph becomes connected almost

surely within a very narrow band of edge numbers. An interesting example
is use of stochastic methods to construct graphs with given degree and girth
(the minimum size of a cycle) which are roughly of the minimum possible
order. This approach is now called the 'probabilistic method', described,
e.g., in (Spencer, 1994). In another direction, there is the elegant theory
of random branching processes, which developed from the question of how

likely it is that a given line of descent of the nobility would become extinct.

Perhaps the most convincing case for the importance of stochastic methods
is in the theory of ODE's and PDE's. Differential equations were developed
to model nature with the full understanding that every specific equation
was a partial representation of reality that modeled some effects but not
others. The original case was, of course, the 2-body problem and Newton's
laws of motion. This predicted wonderfully planetary motion and, with

perturbations, models the full set of planets for moderate periods of time

(e.g., maybe 108 years). But going out further (maybe to 109 years), the
unmodeled effects begin to add up and the approximation is not useful. So
where does this leave the mathematical study of the 3-body problem? It
makes the classical deterministic analysis of the 3-body gravitational
equations about as relevant to the world as the continuum hypothesis! A major
step in making the equation more relevant is to add a small stochastic term.
Even if the size of the stochastic term goes to 0, its asymptotic effects need
not. It seems fair to say that all differential equations are better models of
the world when a stochastic term is added and that their classical analysis
is useful only if it is stable in an appropriate sense to such perturbations.

What is more important to the mathematician is that the nature of the

analysis
of a differential equation shifts when they are considered stochastically.

For classical differential equations with well-behaved solutions, it generally
makes little difference whether we add a stochastic term or not: an attractive
fixed point remains an attractive fixed point (though it gets a bit 'blurred' -

the solution will jiggle around the fixed point a bit). But when the equation
leads to some sort of 'chaotic' or turbulent behavior, we get a very different
and hopefully much more satisfactory picture of the equation through its
stochastic analysis. Instead of focussing on describing the pathologies of the

strange attractors to which the classical solution tends asymptotically, the
center of attention is now the existence of an invariant probability measure
in which almost all solutions spend their whole lives. This idea originated in
statistical mechanics, in the study of Brownian motion and the Ising model.

Unfortunately, many of the 'results' in these theories are either heuristically
justified by physicist-style reasoning or are still in the stage of dreams (as
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discussed in the talk of Talagrand). What we hope will happen, and has
been proven at least in some cases, is that almost all random orbits have
similar structure which can be described in great detail and which give real

insight into the differential equation.

A startlingly beautiful successful example is the analysis of the stochastic

Burger's equation by Weinari E, Y. Sinai and others (E et al, 1997). Whereas
the usual Burger's equation can develop a huge mess of shocks, in the
periodic stochastic case, there turns out to be almost surely one and only one
shock wave which persists for all time (past and future) and which absorbs
all other shocks3. The grand challenge (as our funding agencies like to say)
is to analyze the stochastic Navier-Stokes equation, possibly leading to an

understanding of turbulence, as discussed in Fefferman's talk.

Mathematical physics has lept ahead of pure mathematics in the use of
stochastic methods: a central element in string theory is the introduction
of random Riemann surfaces via a probability measure on the moduli space
and Hawking has considered random topologies on space-time.

7. Thinking as Bayesian inference

I want to conclude with some description of the area that I know best:
the modeling of thought as a computational process. I want to begin by
contrasting the idea of reasoning with logic and reasoning with likelihoods
with two examples. The example of the use of logic is an amusing
syllogism taken from the Boston Driver's Handbook. The reader may entertain

himself/herself by checking the logic!

Premises:

a) Tolstoi was a genius,
b) Tolstoi can only be truly appreciated by geniuses,
c) No genius is without some eccentricity,
d) Tolstoi sang the blues,
e) Every eccentric blues singer is appreciated by some

halfwit,

f) Eccentrics think they own the road.

Consequence: There is always some half-wit who thinks he
owns the road.

3I am sorry that this group is not into computer simulations, so I cannot show you
here an impressivesimulation.
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Although absurd. I think this syllogism points out well the fact that precise
reasoning is seldom appropriate in real life - generalizations usually apply
only in various contexts with various degrees of plausibility and stringing
many of them together is bound to create nonsense. Thus (d) for instance

might be considered an acceptable metaphor and (f) is acceptable common

usage meant to apply only to a certain class of eccentrics (possibly disjoint
from the eccentrics in (c)). But it makes no sense to reason with them

logically. Contrast the above with Judea Pearl's example of common-sense

reasoning from his book (Pearl 1988):

a) Watson phones Holmes in his office and states the burglar
alarm in Holmes's house is going off. Holmes prepares to rush
home.

b) Holmes recalls Watson is known to be a practical joker
hence doubts his statement.

c) Holmes phones Mrs. Gibbon, another neighbor. She is

tipsy and rants about crime, making Holmes think she has
heard the alarm.

d) Holmes remembers the alarm manual said it might have
been triggered by an earthquake.
e) Holmes realizes that if there had been an earthquake, it

ought to be mentioned on the radio.

f) Holmes turns on his radio to check.

In Pearl's analysis, Holmes's mental processes are modeled by a 'Bayesian
net', shown in figure 4. Such a net is a directed graph whose nodes represent
events which may or may not be true. The edges represent causation and
have conditional probabilities attached to them. This set of conditional

probabilities is called the 'prior', the probabilistic information that Holmas

brings to the table before his phone rings. In the figure there are 6 vertices

representing the 2 known events - the testimony of Watson and Gibbons
- and 4 events whose occurence Holmes is weighing. At each stage of his

thinking, Holmes has some evidence vertices whose truth value is known
- and has his priors and needs to compute the 'posterior', the updated
probabilities of all the events, given the evidence. Note how his reasoning
goes up and down in this graph, seeking to fix better probabilities to the
unknown events by, e.g., phoning Mrs. Gibbons and by turning on his radio.
See Pearl's book, p.42-52, for details on this example and the algorithm for
'belief updating'.
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Earthquake ??

Figure 4. The Bayesian belief net for Pearl's anecdote
about Holmes's burglar alarm.

One of the central problems in understanding thinking has been to formalize
inductive learning. Although logic offers a system for formalizing deduction,
induction has been much harder to understand from a logical perspective.
I believe by far the most convincing formal definition of induction is the
one discovered by Leslie Valiant and now known as the 'PAC (or 'probably
approximately correct') model. I want to give this definition in full because
it also illustrates how probabilistic methods extend naturally to learning as
well as inference.

Here is the setup: 0, is a set of possibilities and C is a class of predicates
P : Q \342\200\224> {0,1}. One of the P

\342\202\254 C is true and the problem is to estimate the
true P on the basis of examples (y,P(y)). The class C is said to be PAC-

learnable if there is an algorithm which computes a guess Pp \342\226\240 Cl \342\200\224> {0,1}
from n examples T> =

(y\\,
\342\226\240\342\226\240\342\200\242 , yn; P{yi), \342\200\242\342\226\240\342\200\242 , P{yn)) and which satisfies the

following:

Vei, \302\2432

3n V prob. distr. 7r on Cl

yi, \342\226\240\342\226\240\342\226\240 ,yn \342\202\254 O, iid wrt 7T => Prob\302\251 (Proby{Pv(y) ^ P{y)) <
e2)

> 1-ei.

Note what this means: you have no idea which examples are common and
which are rare in real life, but what you must rely on is that your learning
examples are drawn from the same distribution as your test examples. Then
there is small probability ei of being given really misleading examples; but,
if you are given typical examples, then you only make

\302\2432

errors after seeing
enough examples. I find this very convincing as the 'right' way to formalize
inductive learning.
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Returning to thinking as a whole, which includes learning models, storing
models, and reasoning from models, let's consider the hypothesis that

thinking
is accomplished by constructing probability models and using Bayesian

inference. I believe there are three major obstacles that have to be overcome
to make it plausible that this can work in real situations and not just in toy
examples like that of Pearl. The first is that in the real world, there are
millions of random variables to be considered and full probability tables for
all possible values of these variables are much much too huge to be stored.
We need some restricted class of probability models which seem expressive
enough to model reality but which are succinct enough to be storeable.

Secondly; we have to show inference at reasonable speed is feasible with such
models. Thirdly, we have to show that the parameters in these classes of

probability distributions are PAC-learnable. This is a tall order but major
work has been done and some very interesting progress seems to be being
made.

Gibbs made the first major step to creating huge but workable probability
models. His idea is to consider models such that the logarithm of the

probability is the sum of terms each involving only a small number of random
variables at a time:

Prob{{xk}) = Le-Zc^c(xc)
/j

where Z is a constant, xc \342\200\224

\\_Xk I
k \342\202\254 C} and the sets C are supposed to

be 'small' sets of the variables. Such 'Gibbsian' models have been extremely
widely used in AI. vision, speech, and neural networks. In the continuous
domain, such models may be viewed as natural generalizations of Gaussian
models: Gaussian models are precisely those such that log-probability is the
sum of terms involving only two variables at a time and of the form axi, bx\\

or cXiXj. But general Gibbsian models may be highly non-Gaussian, non-

parametric, and with mixed continuous and discrete variables.

Wavelet expansions of images of the real world are examples which lead

directly to non-Gaussian Gibbs probability distributions. The key reason
wavelet expansions are preferred to, e.g., Fourier expansions, for images
is that the wavelet coefficients of natural images are sparse. This means
that typically a relatively small number of the wavelet coefficients are large
and most are near zero. More explicitly, they behave as though sampled
from a non-Gaussian distribution like p(I) = \\z~a^-ja v>Ca> where ca are the
wavelet coefficients of the image i\\

Gibbsian models alone do not seem to be expressive enough for the full real
world: it seems that the needed probability models must also incorporate
'dynamic links', further variables which bind or compose parts into wholes
in a grammatical fashion. Some of these variables identify 'slot fillers', e.g.,
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J(x) 7Mx)) I(x) J^-Mx))

FIGURE 5. Example from the work P. Hallinan on aligning
faces by diffeomorphisms. The two faces are given by images
I and J and the warping is given by the map <f>. Reproduced
with permission by AKPeters.

pointers to the word which is the subject of a sentence or the point on the;
retina is the nose of a face being perceived. Other links are needed to group
related objects like things with common motion or the pixels imaging the
same object in the left and right eyes. Developing probability models with
such dynamic links is a major area of research today.

Face recognition is a simple example where dynamic link variables may be
used. One can seek to identify faces by forming a universal 'template' face
and warping this template onto all perceived faces by a suitable diffeomor-

phism, called the 'rubber mask technique' by (Widrow 1973). Differing
illumination also causes large changes in the image of a face, so the random
variables in this model are both the coordinates of the warping applied to
reference points in the template and shading coefficients expressing how the
face is illuminated. The log-probability is then a sum of terms expressing
the goodness of fit of the warping of the observed image with a sum of

templates representing faces under different lighting conditions (Hallinan et al.

1999). Some examples are shown in figure 5.

Is it practical to make inferences on the basis of these complex models? Very
often, the inference one wants to make is to find the MAP estimate for the
relevant unobserved random variables xs, with the probability distribution
conditioned on all observations x~r. Here MAP stands for 'Maximum A

Posteriori' probability, the most probable set of values of these variables
and we are seeking:

argmaxxsp(a:s | xr).
This is an optimization problem and there are three basic techniques for

solving or approximately solving such problems: gradient descent, dynamic
programming, and Monte Carlo Markov chains. Unfortunately, they all run
into problems when the model gets complex: gradient descent gets lost in
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Figure 6. Example from the work of M. Isard and A. Blake
on tracking moving faces in a cluttered environment using
particle filtering. On the right are the images; on the left are
smoothed multi-modal probability distributions estimating
the conditional probability of a face at each location, given
the present and past image sequence. Reproduced with
permission of Kluwer Academic Publishers.

local optima; dynamic programming only works when there is a natural
linear ordering of the variables, decoupling non-adjacent variables; and Monte
Carlo Markov chains tend to be very slow. Nonetheless, these have been
the workhorses in the field until recently. Speech recognition, for example,
got where it is by total reliance on dynamic programming techniques and is
weak where these methods fail.

A new idea to tame stochastic methods has recently been explored by
several groups. This has been called 'particle filtering' and 'factored sampling'
(Grenander et al.. 1991), (Gordon et al., 1993), (Kanizawa et al., 1995) and

(Blake-Isard, 1996), and is a Monte Carlo method which works by

computing
with a moderate sized sample {xg } (perhaps 100 or 1000 a's) from the

distribution, not just with one sample at a time as in Monte Carlo Markov
chains. The point is to make a weak approximation:

p{- |fj.) \"\"^TtOa^a)
a
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which is to say, for some class of nice random variables / on our probability
space:

Exp(/ | x^) w
^2waf{xp).

a

The hope is that many multi-modal probability distributions can be
approximated by weighted samples in this way, at least for the random variables
of interest. More than that, one hopes that maintaining this sample will
allow the robust merging of new data into a situation where a previously less

likely option is changed into the most likely option. An example showing the
successful tracking of multiple moving people, from the work of Blake and

Isard; is shown in figure 6. Standard classical techniques, like the Kalman

filter, based on Gaussian models, typically fail in cases like this.

This discussion has been aimed at giving a flavor of research in the
application of stochastic methods to modeling intelligent behaviour. This is very
much an on-going enterprise. All too often, various schools studying the

problem of modeling thought have announced that they had the key and
that the full solution of reproducing intelligent behaviour was just a matter
of a few more years of research! As all these pronouncements in the past
have flopped, I refrain from making any claims now except to say that the
ideas just sketched seem to me on the right track.

My overall conclusion is that I believe stochastic methods will transform pure
and applied mathematics in the beginning of the third millenium.

Probability and statistics will come to be viewed as the natural tools to use in
mathematical as well as scientific modeling. The intellectual world as a
whole will come to view logic as a beautiful elegant idealization but to view
statistics as the standard way in which we reason and think.
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