MONT 105Q - Mathematical Journeys

Discussion - Using the Standard Normal Table

March 21, 2016

Background

Right-hand tail probabilities for a standard normal random variable (i.e. normal distribution with $\mu=0, \sigma^{2}=1$) are given in the table on the attached sheet. For instance, The entry for $z=1.43$ is .0764 . This means that

$$
P(Z>1.43)=.0764
$$

From this we could also derive facts such as

$$
P(Z \leq 1.43)=1-.0764=.9236 .
$$

Moreover, by the symmetry of the standard normal curve, if $c>0$, we can see

$$
P(0<Z<c)=\frac{1}{2}-P(Z>c)=P(-c<Z<0)
$$

Hence, for instance,

$$
\begin{aligned}
P(-1.0<Z<2.0) & =P(-1<Z \leq 0)+P(0<Z<2) \\
& =\left(\frac{1}{2}-P(Z>1)\right)+\left(\frac{1}{2}-P(Z>2)\right) \\
& =(.5-.1587)+(.5-.0228) \\
& =.3413+.4772=.8185 .
\end{aligned}
$$

For today's discussion problems, the following key fact will be needed too.
Key Fact: If Y is normal with mean μ and standard deviation σ, then

$$
Z=\frac{Y-\mu}{\sigma}
$$

is standard normal, and the table can be applied to Z.
For Example: Say we know that Y has a normal distribution with mean $\mu=12$ and SD $\sigma=2$. Suppose we want to know the probability $P(Y>11.3)$. We can determine this from the Key Fact as follows:

$$
\begin{aligned}
Y>11.3 & \Leftrightarrow Z=\frac{Y-12}{2}>\frac{11.3-12}{2}=-.35, \text { so } \\
P(Y>11.3) & =P(Z>-.35) \\
& =1-P(Z>+.35) \text { by symmetry } \\
& =1-.3632 \text { from table } \\
& =.6368
\end{aligned}
$$

In today's discussion, you will practice using the standard normal table to answer questions about normally distributed quantities following similar methods.

Discussion Questions

A) Let Z be a standard normal.

1) Find $P(Z>1.29)$.
2) Find $P(Z<1.0)$.
3) Find $P(-2.13<Z<-0.56)$.
4) Find c such that $P(Z>c)=.05$. (You'll need to "interpolate" here. Do you see why?)
B) Y is normally distributed with mean 6 and SD 4. Find
5) $P(Y<7)$.
6) $P(Y>8.5)$.
7) $P(5<Y \leq 8)$.
C) SlimMints are sold in two-packs with a stated label weight of 20.4 grams. The actual weights of the packages are normally distributed with mean $\mu=21.37$ and $\mathrm{SD} \sigma=.4$.
8) Let Y be the weight of a single package selected at random from the production line. What is the probability $P(Y>22.07)$?
9) Suppose that 15 packages are selected independently. Let X be the number that weigh less than 21 grams. What is $P(X=2)=$ the probability that exactly two have weight less than 21 grams?

We'll compare notes and I'll give the correct answers at the end of the class.

