MONT 104Q - Mathematical Journeys: From Known to Unknown Proofs from Class on Friday, October 2

Here are writeups of the various proofs the groups presented in class today on the problems from Wednesday's handout so that everyone has a "clean record" of what we did. The figures are on the back of this page.
B) Let $\triangle A B C$ be an equilateral triangle and let D be a point on the side $B C$ different from B, C. Prove that the line segment $A D$ is shorter than the sides of the triangle.

Proof 1: (by contradiction). Assume $A D$ is greater than the sides $A B, A C, B C$ of the equilateral triangle $\triangle A B C$. By Proposition 18, $\angle A C D>\angle A D C$ and $\angle A B D>\angle A D B$. By "Common Notion 6," this implies $\angle A C D+\angle A B D>\angle A D C+\angle A D B$. By Proposition 13, $\angle A D C+\angle A D B=$ two right angles. So $\angle A C D+\angle A B D>$ two right angles. But that contradicts Proposition 17. Therefore $A D$ is shorter than the sides of the triangle.

Proof 2: (also by contradiction). Assume $A D$ is greater than the sides $A B, A C, B C$ of the equilateral triangle $\triangle A B C$. Then by Proposition 16, the exterior angle $\angle A D B$ to triangle $\triangle A D C$ is greater than the interior angle $\angle A C D$. By Proposition 18, in the triangle $\triangle A B D$, we have $\angle A D B<$ $\angle A B D$ since the side $A D>A B$ by assumption. But Proposition 5 implies $\angle A B D=\angle A C D$ since $A B=A C$. This is a contradiction because we have $\angle A D B>\angle A C D=\angle A B D>\angle A D B$. (The angle $\angle A D B$ cannot be greater than itself.)
C) Prove the following important fact: Given a line and a point P not on the line, the perpendicular from P to the line (the result of the construction from Proposition 12) is the shortest line segment joining P to any point on the line. (Note: You will probably be tempted to use the Pythagorean Theorem here. We have not proved that!)

Proof 1: (This is the one I saw first and I think this is where Isabel was headed - another proof by contradiction): Assume $P C \geq P Q$ (or equivalently $P Q \leq P C$). Then in the triangle $\triangle P Q R$, by Proposition 18, we have $\angle P Q C \geq \angle P C Q$. But then $\angle P Q C+\angle P C Q \geq 2$ right angles. This contradicts Proposition 17.

Proof 2: (This is what Katie was saying at the end.) A direct proof (not by contradiction): Since $\angle P C Q$ is a right angle, by Proposition 17, $\angle P Q C$ is less than a right angle. (If it weren't less, then it, plus $\angle P C Q$ would be more than two right angles and that contradicts Proposition 17). But since $\angle P C Q>\angle P Q C$, Proposition 19 implies that $P Q>P C$.

Figure 1: Figure for Question B

Figure 2: Figure for Question C

