
MONT 104Q – Mathematical Journeys: From Known To Unknown
Discussion Day 4, part b

How do we decide what to prove? – October 30, 2015

Background

Recall that for any two positive integers m, n, there exist unique integers q and r with

(1) n = qm + r and 0 ≤ r < m.

(Another way to say this would be that n

m
= q + r

m
with 0 ≤ r < m, but we won’t make

use of the fraction form.) The q is called the quotient and the r is called the remainder on
division.

To have a reasonable way to describe the output of this integer division process, let’s
introduce the notation n Rm for the remainder r when we divide m into n. Thus, for
example

17 R 3 = 2 since 17 = 5 · 3 + 2

is the unique equation of the form (1) for n = 17 and m = 3. Similarly, with a slightly
larger example

361 R 15 = 1 since 361 = 24 · 15 + 1,

so the remainder on division is 1. Note that the possible values of n Rm are 0, 1, . . . , m−1
no matter what n is. Also note that if n < m, then n Rm = n since the division in that
case gives the rather uninteresting equation n = 0 · m + n.

Last time, we were investigating the remainders of the powers

r R m, r2 R m, . . . rk R m, . . .

for the r = 1, 2, . . . , m − 1. We saw that mathematicians often try to investigate a new
area by “experimenting” or gathering data. But we also ran into a small bottleneck here:
The computations rk R m can get very tedious if k is large, or if we need to do a lot of
them because m is large. So to begin today, let’s prove a “short cut” to help us compute
these powers in a more reasonable way.

Questions

A) Show that if n1 R m = r1 and n2 R m = r2, then n1 · n2 R m = r1 · r2 R m. (Note: by
the uniqueness of the quotient and the remainder in the range 0 ≤ R < m in (1), this
amounts to showing that n1 · n2 − r1 · r2 is a multiple of m.)

Next, we need to understand why I said knowning the fact in part A would give us a short-
cut(!) To see why this is true, consider the problem of computing the power remainders
5k R 17. That would get really tedious really fast “the old way!” Notice that

52 R 17 = 25 R 17 = 8
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What part A says is that to compute the higher powers 53 R 17, 54 R 17, we don’t need to
multiply out the 53, 54, . . .. We just need to use the previous power R-value and multiply
that by 5 each time:

52 R 17 = 8 and 5 R 17 = 5 ⇒ 53 R 17 = 8 · 5 R 17 = 40 R 17 = 6

since 40 = 2 · 17 + 6. Then

54 R 17 = 6 · 5 R 17 = 30 R 17 = 13,

(since 30 = 1 · 17 + 13), then

55 R 17 = 13 · 5 R 17 = 65 R 17 = 14

(since 65 = 3 · 17 + 14), and so on. The real benefit of using A this way is that we’re
severely cutting down on the sizes of the numbers we need to deal with by not directly
computing 5k each time!

B) Using the shortcut provided by part A repeat the sorts of computations we were doing
last time on the power remainders rk R 17 for r = 1, 2, . . . , 16 and enough k’s to see
some patterns. This is a significantly larger calculation than the ones you were doing
last time, so it will pay to divide the labor in a smart way.

C) As a nice by-product of part A, you should now be able to understand something you
may have noticed before. What happens when rk R m = 1 for some k and some r (for
a given m)? What is true about the higher power remainders rk+1 R m, rk+2 R m,
etc. when this happens?

(D) By this point, between Wednesday and today, you should have generated enough data
to start to see patterns and ask questions about what should happen in general (i.e.
for some “special” m, or m in general). Formulate the questions or conjectures about
general patterns that have come up in your discussions. We will continue with this
next Wednesday after the midterm exam.

Assignment

Each group should keep a record of its work on these questions together with the
questions from Wednesday, to turn in at the end of the period today.
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