MONT 104Q - Mathematical Journeys: From Known To Unknown
 Discussion Day 4, part a
 How do we decide what to prove? - October 28, 2015

Background

In our discussion of the proofs from G.H. Hardy's A Mathematician's Apology, for the proof that there are infinitely many prime numbers (taken from Proposition 20 in Book IX) we had to make use of the integer division process. What this says is that for any two positive integers m, n, there exist unique integers q and r with

$$
\begin{equation*}
n=q m+r \quad \text { and } \quad 0 \leq r<m . \tag{1}
\end{equation*}
$$

(Another way to say this would be that $\frac{n}{m}=q+\frac{r}{m}$ with $0 \leq r<m$, but we won't make use of the fraction form.) The q is called the quotient and the r is called the remainder on division.

To have a reasonable way to describe the output of this integer division process, let's introduce the notation $n R m$ for the remainder r when we divide m into n. Thus, for example

$$
17 R 3=2 \quad \text { since } \quad 17=5 \cdot 3+2
$$

is the unique equation of the form (1) for $n=17$ and $m=3$. Similarly, with a slightly larger example

$$
361 R 15=1 \quad \text { since } \quad 361=24 \cdot 15+1
$$

so the remainder on division is 1 . Note that the possible values of $n R m$ are $0,1, \ldots, m-1$ no matter what n is. Also note that if $n<m$, then $n R m=n$ since the division in that case gives the rather uninteresting equation $n=0 \cdot m+n$.

Questions

A) What happens if you compute the following remainders of powers of integers? In each row, keep going until you notice a pattern in what is happening in all the rows. (Note there's nothing to do on the first row - the powers of 1 - since all of the R-values on that row will be 1.)

$$
\begin{aligned}
& 1 R 5,1^{2} R 5,1^{3} R 5, \cdots \\
& 2 R 5,2^{2} R 5,2^{3} R 5, \cdots \\
& 3 R 5,3^{2} R 5,3^{3} R 5, \cdots \\
& 4 R 5,4^{2} R 5,4^{3} R 5, \cdots
\end{aligned}
$$

Try to describe the pattern you are seeing in words.
B) Is there a similar (but possibly not identical) pattern when you go to remainders on division by 7? Compute:

$$
\begin{aligned}
& 1 R 7,1^{2} R 7,1^{3} R 7, \cdots \\
& 2 R 7,2^{2} R 7,2^{3} R 7, \cdots \\
& \quad \vdots \\
& 6 R 7,6^{2} R 7,6^{3} R 7, \cdots
\end{aligned}
$$

C) What if you try the same computations with remainders on division by 6 (take powers of $1,2,3,4,5$), then remainders on division by 8 (powers of $1,2,3,4,5,6,7$), then remainders on division by 9 (powers of $1,2,3,4,5,6,7,8)$? Are there common features the remainders on division by 5,7? Are there different features? Do 5, 7 have a property that $6,8,9$ do not?

Assignment

Each group should keep a record of its work on these questions together with the questions from next time, to turn in at the end of the period Friday.

