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I. Identifications. For any 5 of the following historical figures, give the approximate historical
period in which they lived, where they were active, and the main contributions they made
that we discussed. (If you submit answers for more than 5, only the best 5 will be counted.)

(A) (10) Eratosthenes – about 276 - 195 BCE, active in Alexandria. He made a surprisingly
accurate estimate of the radius of the Earth based on measurements with a gnomon (sundial).
He also developed a method for finding all prime numbers less than or equal to given number
(the “sieve method”).

(B) (10) Claudius Ptolemy – about 90 - 168 CE, active in Alexandria. He made some
contributions to geometry (in particular a theorem about the relation of the edges and
the diagonals in cyclic quadrilaterals). He wrote on astronomy and developed the largest
geographical database known from the ancient world, allowing for construction of maps of
the known world at the time.

(C) (10) Muhmammad ibn Musa al-Khwarizmi – about 780 - 850 CE, active in Baghdad.
He wrote a treatise on algebraic techniques (the word “algebra” comes from a corruption of
the Arabic in the title). He also wrote a text about the use of Hindu-Arabic numerals (our
base-10 positional system) that was very influential

(D) (10) Thabit ibn Qurra – about 826 - 901 CE, active in Baghdad. He was active in
the House of Wisdom set up by the Caliph al-Mansour and participated in the translation
of many Greek mathematical texts into Arabic. He extended the results of Archimedes’
Quadrature of the Parabola, made a critical reexamination of the basis of Euclidean geometry
(especially the role of Postulate 5) and extended Euclid’s work on perfect numbers to give a
similar result for amicable pairs.

(E) (10) Leonardo Pisano (“Fibonacci”) – about 1170 - 1250 CE, active in Italy (various
cities). He wrote a book introducing the Hindu-Arabic numerals to scholars in western Eu-
rope and made various other algebraic and numerical contributions, including the definition
of the well-known Fibonacci sequence.

(F) (10) Filippo Brunelleschi – about 1377 - 1446 CE, active in Florence. He was an architect
and artist whose best-known work was the dome of the cathedral in Florence (still the largest
masonry dome in existence in the world). He studied geometry deeply for use in design, and
also for basis of linear perspective in painting (methods for reproducing what the eye sees
in a 3D scene on a flat 2D canvas or piece of paper).

II.

(A) (10) What are the 5 Common Notions (Axioms) and 5 Postulates that appear at the
beginning of Book I of Euclid’s Elements?

Answer: The Five Common Notions are:
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(a) Things equal to the same thing are equal to one another

(b) If equals are added to equals, the results are equal

(c) If equals are subtracted from equals, the remainders are equal

(d) Things that coincide with one another are equal to one another

(e) The whole is greater than the part

The Five Postulates are:

(a) (It is possible) to connect any two points with a straight line

(b) (It is possible) to extend a line indefinitely in both directions

(c) (It is possible) to draw a circle with any given center and any given radius

(d) All right angles are equal

(e) If two lines falling on a third line make angles summing to less than two right
angles on one side, then the two lines, if extended, will meet on that side of the
third line.

(B) (15) Proposition 32 in Book I deals with the sum of the angles in a triangle. What
is the exact statement that Euclid proves? Outline the construction and proof that
establishes this Proposition. (You don’t need to quote earlier propositions by number,
but do give a reason for each of your assertions.)

Answer: Proposition 32 says that (a) each exterior angle formed by extending a side
of a triangle is equal to the sum of the two opposite interior angles, and (b) the sum
of the interior angles in a triangle is equal to 2 right angles (or a straight, 180-degree,
angle in our language). The proof is based on this construction:

Extend the side AB to D and construct a parallel BE to AC through the point B
(using Proposition 31 – OK just to say this construction had been shown previously).
Then in the resulting figure 6 CAB = 6 EBD since those are corresponding angles
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for the two parallels and the transversal. Similarly, 6 EBC = 6 ACB since those are
alternate interior angles. From this, we get part (a) immediately from Common Notion
2. This also shows (again by Common Notion 2) part (b): that the angle 6 DBA is
equal to the sum of the angles in the triangle. But 6 DBA is equal to 2 right angles
since D, B, A are all on the same line (previous proposition). QED

Choose either this problem (III) or III’ on the next page. (If you submit solutions for both,
only the better of the two will be used.)

(A) (15) What is true about the sum of the angles in a triangle under the alternate hyper-
bolic form (H) of Postulate 5? Outline the proof, assuming the needed properties of
Saccheri quadrilaterals.

Answer: Under the assumption (H), the sum of the angles in any triangle is strictly
less than 2 right angles. This is proved as follows:

E is constructed to be the midpoint of AC, so AE = CE. Similarly D is constructed
to be the midpoint of AB, so AD = DB. Then we extend the line ED and drop
perpendiculars from A, B, and C. By the AAS side criterion (using equality of vertical
angles and Postulate 4), ∆CGE and ∆AHE are congruent, as are ∆AHD and ∆BFD.
This shows that CG = HA = BF , so CBFG is a Saccheri quadrilateral by definition.
We know, however that the sum of the “summit angles” in such a quadrilateral is less
than two right angles. Here the “summit angles” are 6 GCB and 6 FBC. But then by
the congruences proved before, the sum of the angles in the triangle ∆ABC is equal
6 GCB + 6 FBC, so the angle sum is less than two right angles.

(B) (10) Was the result in part A the contradiction that Girolamo Saccheri, S. J. was seek-
ing under the assumption (H)? Explain. What did Janos Bolyai and Nikolai Ivanovich
Lobachevsky eventually show about the search for a contradiction starting from (H)?

Answer: No, this is not a contradiction because the angle sum theorem from Euclid’s
Proposition 32 (see problem II) is only valid under his Postulate 5. (The equality
of the corresponding angles and the alternate interior angles formed by a transversal
on two parallel lines from Proposition 29 is proved using Postulate 5.) Bolyai and
Lobachevsky (and Gauss too) eventually realized that no contradiction would result
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from (H). There is another equally valid geometric theory here, the one we now call
“hyperbolic geometry.”

III’. (If you submit solutions for both this problem and III on the last page, only the better
of the two will be used.)

(A) (15) The following problem appears in a text by the Indian mathematician Mahavira
(about 850 C.E.). Solve it using our modern notation and algebraic methods: Of a
collection of mangoes, the king took 1/6, the queen 1/5 of the remainder, the chief
princes 1/4, 1/3, 1/2 of the successive remainders, and the youngest child took the
remaining 3 mangoes. Oh you who are clever in miscellaneous problems on fractions,
give the measure (number) of the original collection of mangoes.

Answer: The problem can be solved either by “breaking down” or “building up.” If
we build up from the 3 mangoes the youngest child got, then the last chief prince took
1/2, so there were 6 mangoes left before he made his choice. Similarly the second
chief prince took 1/3, so there were 9 mangoes left before his choice. Working back in
this way, we can see the original pile contained 18 mangoes and each of the six people
involved took equal shares – 3 mangoes each.

(B) (10) What was probably the single largest contribution of ancient Indian mathematics
to the way we do mathematics today? How and when did this contribution enter our
mathematical tradition?

Answer: It was pretty definitely the use of the base-10 positional number system
containing digits 0, 1, 2, . . . , 9 and methods for computing with that system. Knowledge
of this system reached Europe from India by way of the Islamic world in the middle
ages. The book by al-Khwarizmi popularized this system in the Islamic world, and
European mathematicians such as Fibonacci learned it from Islamic sources.

IV.

A) (15) Draw the diagram for the Chinese “go gou theorem” (with a general right triangle,
sides a, b and hypotenuse c) and show how it provides an algebraic/geometric proof of
the general “Pythagorean theorem.”

Answer: Here is the original Chinese figure we saw in class:
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If the longer sides of the triangles are all b and the shorter sides are all a, then the four
triangles and the smaller central square fit together to make a large square with side
c, the hypotenuse of the triangles. By adding areas, we see

c2 = 4 · ab

2
+ (b− a)2 = 2ab + b2 − 2ab + a2 = a2 + b2

This shows the algebraic form of the “Pythagorean theorem.”

B) (10) How is this proof different from the one given by Euclid in Proposition 47 of Book
I of the Elements?

Answer: It is mainly different in that Euclid’s proof uses no algebra at all. Euclid
shows that in the figure

The area of the small square on the left is equal to the area of the rectangle to the
left of the blue line in the large square, and similarly, the area of the medium square
on the right is equal to the area of the rectangle to the right of the blue line in the
large square. So “the square on the hypotenuse equals the sum of the squares on the
sides” in terms of area. This is based entirely on comparisons between areas of various
triangles and parallelograms proved with no algebra.

V.

A) (15) What are perfect numbers? What are amicable pairs of numbers? Give an example
of a perfect number and an amicable pair and explain how they satisfy the definitions.

Answer: A perfect number is a positive integer that is equal to the sum of its proper
integer divisors. For instance, 28 = 1 + 2 + 4 + 7 + 14 is perfect. An amicable pair
of numbers is a pair m, n of positive integers with the property that the sum of the
proper divisors of m is equal to n, and vice versa the sum of the proper divisors of n
is equal to m. The pair m = 220, n = 284 is an amicable pair since 220 has proper
divisors 1, 2, 4, 5, 10, 20, 11, 22, 44, 55, 110 and these add up to 284, while 284 has proper
divisors 1, 2, 4, 71, 142, and these add up to 220.
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B) (10) How does the historical development of knowledge about these number-theoretical
ideas tie together the Greeks, the medieval Islamic mathematicians, and mathematics
in the contemporary world?

Answer: The idea of perfect numbers and amicable pairs can be traced back to the
Pythagoreans and their number symbolism. Euclid studied perfect numbers in Book
X of the Elements, showing that if p is prime and 2p−1 is also prime, then 2p−1(2p−1)
is an even perfect number. (We get can 28 = 4 · 7 = 23−1(23 − 1) this way.) The
medieval Islamic mathematicians learned about these ideas from their study of Euclid
and other Greek texts, and extended some of them – for instance the theorem of Thabit
ibn-Qurra on amicable pairs. These ideas lead to many questions whose answers are
unknown even today and which are connected to research going on in contemporary
mathematics – Are there any odd perfect numbers? Are there infinitely many primes
p for which 2p− 1 is also prime? Are there infinitely many amicable pairs of numbers?

VI. Essay. (50) Here are two contrasting statements about the ultimate legacy of Greek
mathematics:

• “The death of Archimedes by the hands of a Roman soldier is symbolical of a world-
change of the first magnitude: the Greeks, with their love of abstract science, were
superseded ... by the practical Romans. The Romans were a great race, but they were
cursed with the sterility which waits upon practicality. They did not improve upon
the knowledge of their forefathers, and all their advances were confined to the minor
technical details of engineering. They were not dreamers enough to arrive at new points
of view ... No Roman lost his life because he was absorbed in the contemplation of a
mathematical diagram.” (Alfred North Whitehead – 20th century philosopher)

• “There is no denying that the Greek approach to mathematics produced remarkable
results, but it also hampered the subsequent development of the subject. ... The
Greek preoccupation with geometry ... was a serious constraint. Great minds such
as Pythagoras, Euclid, and Apollonius spent much of their time creating what were
essentially abstract idealized constructs; how they arrived at a conclusion was in some
way more important than any practical significance.” (George G. Joseph, The Crest
of the Peacock)

Begin by summarizing and explaining your understanding of each statement. Then address
the following questions: Have we seen examples in this class where practicality was not
sterile, where concern with applications actually enriched the history of mathematics and
made further progress possible? Have we seen other examples where the “abstract idealized
constructs” of pure mathematics led to major advances? Why do you suppose that Joseph
doesn’t mention Archimedes? Does that omission weaken his point?

A possible response: Whitehead is saying that if a mathematical culture concentrates only
(or maybe too much) on practical applications (as he claims the Romans did), then their
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mathematics can be sterile, in the sense that they will not be ready to develop new ideas as
needed. He compares the Romans to the Greeks and finds the Greeks to be more imaginative
“dreamers” who ultimately contributed much more to the development of mathematics than
the Romans did.

Joseph is saying, on the other hand, that if a mathematical culture focuses only (or
too much) on theoretical mathematics, with its characteristic preoccupations concerning
methods of proof (“how they arrived at results”), then their mathematics can also “miss
out” by not developing practical applications. He singles out the Greeks as a key example of
this, saying that their theoretical orientation (for instance, the lack of notions of numerical
measures of lengths or angles) may in fact have constrained or limited the development of
mathematics.

In a sense, combining the underlying points here, one could argue that the ideal mix is
a healthy combination of pure and applied mathematics, each reinforcing the other. But
Whitehead is saying the Romans went too far in one direction and the Greeks were more
productive, while Joseph is saying the Greeks went too far in the other direction.

As this applies to Greek mathematics in particular, one example that shows how practi-
cality can lead to great mathematical advances is, ironically considering Whitehead’s point
of view, the case of Archimedes himself. One could argue that some of Archimedes’ most
profound and forward-looking pure mathematical work, the Quadrature of the Parabola, was
based on his understanding of the very practical physics of balances, centers of mass, and
so forth. The way the Islamic mathematicians of the middle ages combined Greek geometry
with more practical Mesopotamian algebra and Indian arithmetic is another example of how
(some) practicality can reinforce and enrich pure mathematics.

On the other hand, it was the “abstract idealized concepts” of pure mathematics, in
particular the basis from Euclid, the work of Apollonius on conics, etc. that made it possible
for Archimedes to do what he did. Similarly, later, it was the theoretical basis of Euclidean
geometry that made it possible for Renaissance architects and painters to build things like
the dome of the cathedral in Florence and develop realistic perspective in painting.

Mentioning Archimedes would certainly weaken Joseph’s point since his work combined
the theoretical and the practical in such fruitful ways. But Joseph would also probably
say that Archimedes belongs to the Hellenistic period and marks the start of a different
phase of Greek mathematics. He would say he’s thinking mainly of the earlier period of
Pythagoras, Euclid, and Apollonius. By the time we get to the time of Heron, Claudius
Ptolemy, etc. Greek mathematics has acquired a very practical side in addition to the
theoretical preoccupations. But Archimedes is actually earlier than that too, so it’s subtle!


