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Fans

Definition
A fan is a collection Σ of SCRPC’s in NR such that

If τ is a face of σ ∈ Σ, then τ ∈ Σ

if σ1, σ2 ∈ Σ, then σ1 ∩ σ2 ∈ Σ and is a face of each.

Example: Our picture from Hal’s last talk:

-
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σ3
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�	 σ2

σ23

σ12

σ13

shows a fan Σ with three 2-dimensional cones σ1, σ2, σ3, three
1-dimensional cones (the rays σij = σi ∩ σj ), and one
0-dimensional cone {0}.

Henry K. Schenck Fans, Orbits, and Divisors on Toric Varieties



Fans, cones, and orbits
Divisors

Toric varieties via quotients

The dual cones
We will also need to consider the duals of these cones in M:
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σ∨2

-
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?

σ∨12

Notice: Uσ1 = Spec C[x , y ] and Uσ2 = Spec C[xy−1, y−1] Both
are contained in Uσ12 = Spec C[x , y , y−1]. By localization:

C[x , y ] −→ C[x , y ]〈1/y〉 = C[x , y , y−1]

C[xy−1, y−1] −→ C[xy−1, y−1]〈1/y−1〉 = C[x , y , y−1]

(This is the reason for the slightly weird σ∨ construction:
smaller faces↔ smaller affines.)
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Exercises

Show that the above example gives a collection of affines
that glue together to give P2

Identify the cones and the gluing for the complete fans with
1-dimensional cones generated by

1 ±e1,±e2 (four 2-dimensional cones, four 1-dimensional
cones, one 0-dimensional cone).

2 e1, e2,−e2,−e1 + ae2, where a is any integer ≥ 1 (four
2-dimensional cones, four 1-dimensional cones, one
0-dimensional cone).
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Abstract toric varieties XΣ

As in these examples, any fan Σ gives the combinatorial
information to produce affine torics gluing together to form an
abstract toric variety XΣ.

Most work on toric varieties in algebraic geometry uses this
definition.

All XΣ are normal varieties (all affines Uσ come from saturated
semigroups so coordinate rings are integrally closed). So not
as general as some examples YA we saw in first talks.
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Theorem (Orbit-cone correspondence)
In the toric variety XΣ, there is a 1-1 correspondence

{cones σ ∈ Σ} ↔ {TN − orbits in XΣ}
σ ↔ O(σ) = HomZ(σ⊥ ∩M, C∗).

Under this correspondence,
1 dim O(σ) = dim N − dim σ

2 Uσ = ∪τ face of σO(τ).
3 If τ is a face of σ, then O(σ) ⊂ O(τ) and

O(τ) = ∪τ face of σO(σ).

Key technical point: Uses identification p ∈ Uσ as semigroup
homomorphisms Sσ → C via p 7→ (m 7→ χm(p)).
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If that didn’t make sense, try this example, ...
Let Σ be the following (non-complete) fan in N = R2:

-

6 σr τ1

τ2

The corresponding toric variety XΣ is C2; covering by affines

Uσ = Spec C[x , y ] = C2

Uτ1 = Spec C[x , y , y−1] = C× C∗

Uτ2 = Spec C[x , x−1, y ] = C∗ × C
U{0} = Spec C[x , x−1, y , y−1] = C∗ × C∗
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The (C∗)2-orbits and how they correspond with the cones

Cone Orbit Dimension
σ {(0, 0)} 0
τ1 C∗ × {0} 1
τ2 {0} × C∗ 1
{0} (C∗)2 2

Note: For instance for the cone τ1, τ⊥1 ∩M ' Z is the subgroup
generated by e2. For the 0-dimensional cone {0}, we have
{0}⊥ ∩M ' Z2.

Check:

Uτ1 = O(τ1) ∪O({0}) = (C∗ × {0}) ∪ (C∗ × C∗) = C∗ × C
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Toric morphisms, II

If Σ1 ⊂ N1 and Σ2 ⊂ N2 are fans, then we say a Z-linear
ϕ : N1 → N2 is compatible with the fans if it maps cones to
cones:

σ1 ∈ Σ1 ⇒ ϕ(σ1) ⊂ σ2 ∈ Σ2

(for some σ2).

Theorem
“Toric morphisms are the same as in the affine case” – that is,
any toric morphism between XΣ1 and XΣ2 is given by a mapping
of this form.
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Weil Divisors

Definition
Let X be an irreducible variety. Div(X ) is the free abelian group
generated by the irreducible codimension-1 subvarieties of X .
The elements of Div(X ) are called Weil divisors on X.

Key: If R is a normal domain and P is a codimension-1 prime
ideal of R, then the localization RP is a DVR. This gives a way
to talk about orders of zeros and poles along V (P).

Example: Let P = 〈x〉 in C[x , y ]. If f = α/β ∈ C(x , y), can find
ni ∈ Z such that xn1 |α and xn1 |β (maximal). Then
ord〈x〉(f ) = n1 − n2.
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Divisors on curves

The following special case may be familiar: Say X is a
smooth, compact curve over C, = compact Riemann
surface
There are no nonconstant holomorphic functions on X
But can consider the meromorphic functions on X with
poles bounded by a divisor D =

∑
aipi , ai ∈ N:

H0(D) = {f | (f ) + D ≥ 0}, a finite-dimensional C-vector
space
For any holomorphic 1-form ω on X ,

∑
p∈X resp(fω) = 0.

Analysis of local Laurent series of f ’s in H0(D) gives
Riemann’s inequality: dim H0(D) ≥ deg(D) + 1− g(X ),
and Riemann-Roch identifies the difference between left
and right sides.
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The divisor class group

Definition
The divisor class group is

Cl(X ) = Div(X )/ ∼,

where D1 ∼ D2 if D1 − D2 = (f ) for some f ∈ C(X ) (“linear
equivalence”).

Exercise: Cl(P1) = Z. (Hartshorne says: “Cl(X ) is a very
important invariant, in general not easy to calculate.” This case
is feasible, though!)
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Cl(XΣ) for a toric variety

Theorem
There is an exact sequence

M A−→ Z|Σ(1)| −→ Cl(XΣ) −→ 0

where A is the matrix whose rows are the primitive lattice
generators of the 1-dimensional cones of Σ.

Sketch of proof: First Z|Σ(1)| → Cl(XΣ)→ Cl(TN)→ 0 is exact
since XΣ is the union of the “big torus” isomorphic to TN and
the closures of the orbits corresponding to the 1-dimensional
cones. Since C[x±1

1 , . . . , x±1
n ] is a UFD, Cl(TN) = {0}. For any

m ∈ M, (χm) = 0 in Cl(XΣ). Hence M ⊆ ker(Z|Σ(1)| → Cl(XΣ)).
Exercise: finish this proof.
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An example

For XΣ = P2 from the fan Σ considered earlier we have

Z2

0BB@
1 0
0 1
−1 −1

1CCA
−−−−−−−−−→ Z3 −→ Cl(P2) −→ 0

Hence Cl(P1) ' Z.
Similarly, we have Cl(Pn) ' Z for all n ≥ 1.
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Another example

For XΣ = P1 × P1 from the fan Σ with 1-dimensional cones
spanned by ±e1,±e2 we have

Z2

0BBBBB@
1 0
0 1
−1 0
0 −1

1CCCCCA
−−−−−−−−−→ Z4 −→ Cl(P1 × P1) −→ 0

Hence Cl(P1 × P1) ' Z2.
So now, when you see OP1×P1(a, b), you know what it
means(!) (See Hartshorne, V, III.)
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Divisors

Theorem
Let ρ ∈ Σ(1), and Dρ the corresponding divisor. Then
vDρ(χ

m) = 〈m, uρ〉, where uρ is the primitive lattice vector in that
cone (the “first lattice point” on the ray).

Example: For Σ below

-

6 σr τ1

τ2

take τ1 = cone(e1). Then vτ1(x
2y) = 〈(2, 1), (1, 0)〉 = 2.
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Divisors give maps

Also Cartier = “locally principal” divisors. It is these that
correspond to invertible sheaves = line bundles. If XΣ is
smooth, though, the two notions coincide, so we’ll blur the
distinction(!)
Given D =

∑
ρ∈Σ(1) aρDρ, a basis of H0(OXΣ

(D)) can be
used to define a map XΣ → Pn for n = dim H0(D) + 1.
We can ask whether the map is an isomorphism.
We investigate methods for finding a basis of H0(OXΣ

(D))
next.
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The global sections

Theorem

H0

(
OXΣ

(∑
ρ

aρDρ

))
= Span{χm | 〈m, uρ〉 ≥ −aρ for all ρ}.

Example: For P2 with Σ:

-

6

�
�	

D3

D2

D1

Let D = 2D1. H0(2D1) is spanned by the χm for m = (a, b)
satisfying 〈(a, b), (0, 1)〉 ≥ −2, 〈(a, b), (1, 0)〉 ≥ 0 and
〈(a, b), (−1,−1)〉 ≥ 0.
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Example, continued
The inequalities b ≥ −2, a ≥ 0 and a + b ≤ 0 define a polytope
as follows

uu
u

uu u
@

@
@

@
@

@

The lattice points are a translate of the lattice points in
conv{(0, 0), (2, 0), (0, 2)}. Hence we get a map to P5 whose
image is the degree 2 Veronese image of P2 (same as that from
OP2(2H)).
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An exercise

For Σ as below

D2

D1

D3

A
A

A

D4

with the ray corresponding to D4 equal to cone(−e1 + 2e2).
Compute H0(D1 + D2).
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Support functions, ampleness

Definition
A support function for D =

∑
ρ aρDρ is a function ϕD : |Σ| → R

such that
ϕD is linear on each cone in Σ

ϕD(uρ) = −aρ for all ρ ∈ Σ(1)

Theorem
If Σ has convex support, and is full-dimensional, then D is
basepoint-free⇔ ϕD is convex
If Σ is complete, then D is ample⇔ ϕD is strictly convex

Henry K. Schenck Fans, Orbits, and Divisors on Toric Varieties



Fans, cones, and orbits
Divisors

Toric varieties via quotients

An Example, Demazure’s theorem

Consider 2D1 on P2.

[Draw graph of a support function on board(!)]

Theorem (Demazure)

If Σ has convex support and D is basepoint-free, the H i(D) = 0
for i > 0.
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The quotient construction

Instead of patching affines to get Pn, recall can build this
toric variety globally as (Cn+1 \ {0})/ ∼
Cox: There is an analog of this for any toric variety(!)
Define C[xρ | ρ ∈ Σ(1)] and an ideal

BΣ = 〈xbσ =
∏

ρ/∈σ(1)

xρ | σ ∈ Σ〉

Analog of Cn+1 \ {0} is C|Σ(1)| \ V (BΣ)
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Sanity check

For the standard fan Σ defining P2, labeled like this:

-
σ1

6

σ3

�
�	 σ2

ρ3

ρ1

ρ2

we have xcσ1 = x3, xcσ2 = x2, xcσ3 = x1. So
V (BΣ) = V (x1, x2, x3) as expected.
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The quotient map

If NR is spanned by the uρ for ρ ∈ Σ(1), then

0 −→ M −→ Z|Σ(1)| −→ Cl(XΣ) −→ 0

is exact.
Hit this with HomZ(−, C∗) get

0 −→ G −→ (C∗)|Σ(1)| −→ TN

Since G ⊆ (C∗)|Σ(1)|, G acts on C|Σ(1)|

Modulo some (hard) technical details about quotients by
algebraic group actions (GIT) we get XΣ as the quotient
modulo this action
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Sanity check, II

For P2, the first exact sequence above is

Z2

0BB@
1 0
0 1
−1 −1

1CCA
−−−−−−−−−→−→ Cl(P2) −→ 0

After taking HomZ(−, C∗), we have

(C∗)2

0@1 0 −1
0 1 −1

1A
←−−−−−−−−−− (C∗)3

0BB@
1
1
1

1CCA
←−−− C∗ ←− 0

And indeed C∗ acts on C3 via a ∼ λa.
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Why is this important?

Theorem
Any coherent sheaf on a toric variety XΣ comes from a
finitely-generated Cl(XΣ)-graded module over the “Cox ring”

S = C[xρ | ρ ∈ Σ(1)]

(Generalizes a result of Serre in the case of XΣ = Pn, where the
“Cox ring” is the same as the homogeneous coordinate ring
C[x0, . . . , xn].)

Translates abstract questions about sheaf cohomology into
concrete, computable questions in multigraded commutative
algebra(!)
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