Fans, Orbits, and Divisors on Toric Varieties
Math in the Mountains Tutorial

Henry K. Schenck

Department of Mathematics
University of Illinois, Urbana-Champaign

July 29-31, 2013
Outline

1. Fans, cones, and orbits
2. Divisors
3. Toric varieties via quotients
Fans

Definition

A fan is a collection Σ of SCRPC's in $N_\mathbb{R}$ such that

- If τ is a face of $\sigma \in \Sigma$, then $\tau \in \Sigma$
- if $\sigma_1, \sigma_2 \in \Sigma$, then $\sigma_1 \cap \sigma_2 \in \Sigma$ and is a face of each.

Example: Our picture from Hal’s last talk:

shows a fan Σ with three 2-dimensional cones $\sigma_1, \sigma_2, \sigma_3$, three 1-dimensional cones (the rays $\sigma_{ij} = \sigma_i \cap \sigma_j$), and one 0-dimensional cone $\{0\}$.
The dual cones

We will also need to consider the duals of these cones in M:

\[
\sigma_3^\vee \quad \sigma_1^\vee \quad \sigma_2^\vee \quad \sigma_{12}^\vee
\]

Notice: $U_{\sigma_1} = \text{Spec } \mathbb{C}[x, y]$ and $U_{\sigma_2} = \text{Spec } \mathbb{C}[xy^{-1}, y^{-1}]$ Both are contained in $U_{\sigma_{12}} = \text{Spec } \mathbb{C}[x, y, y^{-1}]$. By localization:

\[
\mathbb{C}[x, y] \longrightarrow \mathbb{C}[x, y]_{1/y} = \mathbb{C}[x, y, y^{-1}]
\]
\[
\mathbb{C}[xy^{-1}, y^{-1}] \longrightarrow \mathbb{C}[xy^{-1}, y^{-1}]_{1/y^{-1}} = \mathbb{C}[x, y, y^{-1}]
\]

(This is the reason for the slightly weird σ^\vee construction: smaller faces \leftrightarrow smaller affines.)
Exercises

- Show that the above example gives a collection of affines that glue together to give \mathbb{P}^2.

- Identify the cones and the gluing for the complete fans with 1-dimensional cones generated by
 1. $\pm e_1, \pm e_2$ (four 2-dimensional cones, four 1-dimensional cones, one 0-dimensional cone).
 2. $e_1, e_2, -e_2, -e_1 + ae_2$, where a is any integer ≥ 1 (four 2-dimensional cones, four 1-dimensional cones, one 0-dimensional cone).
Abstract toric varieties X_{Σ}

As in these examples, any fan Σ gives the combinatorial information to produce affine torics gluing together to form an abstract toric variety X_{Σ}.

Most work on toric varieties in algebraic geometry uses this definition.

All X_{Σ} are normal varieties (all affines U_{σ} come from saturated semigroups so coordinate rings are integrally closed). So not as general as some examples $Y_\mathcal{A}$ we saw in first talks.
Theorem (Orbit-cone correspondence)

In the toric variety X_Σ, there is a 1-1 correspondence

\[
\{\text{cones } \sigma \in \Sigma\} \leftrightarrow \{T_N - \text{orbits in } X_\Sigma\}
\]

\[
\sigma \leftrightarrow O(\sigma) = \text{Hom}_\mathbb{Z}(\sigma^\perp \cap M, \mathbb{C}^*)
\]

Under this correspondence,

1. $\dim O(\sigma) = \dim N - \dim \sigma$
2. $U_\sigma = \bigcup_{\tau \text{ face of } \sigma} O(\tau)$.
3. If τ is a face of σ, then $O(\sigma) \subset O(\tau)$ and $\overline{O(\tau)} = \bigcup_{\tau \text{ face of } \sigma} O(\sigma)$.

Key technical point: Uses identification $p \in U_\sigma$ as semigroup homomorphisms $S_\sigma \to \mathbb{C}$ via $p \mapsto (m \mapsto \chi^m(p))$.
If that didn’t make sense, try this example, ...

Let Σ be the following (non-complete) fan in $N = \mathbb{R}^2$:

$$\tau_2$$

$$\sigma$$

$$\tau_1$$

The corresponding toric variety X_Σ is \mathbb{C}^2; covering by affines

$$U_\sigma = \text{Spec } \mathbb{C}[x, y] = \mathbb{C}^2$$

$$U_{\tau_1} = \text{Spec } \mathbb{C}[x, y, y^{-1}] = \mathbb{C} \times \mathbb{C}^*$$

$$U_{\tau_2} = \text{Spec } \mathbb{C}[x, x^{-1}, y] = \mathbb{C}^* \times \mathbb{C}$$

$$U_{\{0\}} = \text{Spec } \mathbb{C}[x, x^{-1}, y, y^{-1}] = \mathbb{C}^* \times \mathbb{C}^*$$
The $(\mathbb{C}^*)^2$-orbits and how they correspond with the cones

<table>
<thead>
<tr>
<th>Cone</th>
<th>Orbit</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>${(0, 0)}$</td>
<td>0</td>
</tr>
<tr>
<td>τ_1</td>
<td>$\mathbb{C}^* \times {0}$</td>
<td>1</td>
</tr>
<tr>
<td>τ_2</td>
<td>${0} \times \mathbb{C}^*$</td>
<td>1</td>
</tr>
<tr>
<td>${0}$</td>
<td>$(\mathbb{C}^*)^2$</td>
<td>2</td>
</tr>
</tbody>
</table>

Note: For instance for the cone τ_1, $\tau_1^\perp \cap M \simeq \mathbb{Z}$ is the subgroup generated by e_2. For the 0-dimensional cone $\{0\}$, we have $\{0\}^\perp \cap M \simeq \mathbb{Z}^2$.

Check:

$$U_{\tau_1} = O(\tau_1) \cup O(\{0\}) = (\mathbb{C}^* \times \{0\}) \cup (\mathbb{C}^* \times \mathbb{C}^*) = \mathbb{C}^* \times \mathbb{C}$$
Toric morphisms, II

If $\Sigma_1 \subset N_1$ and $\Sigma_2 \subset N_2$ are fans, then we say a \mathbb{Z}-linear $\varphi : N_1 \rightarrow N_2$ is compatible with the fans if it maps cones to cones:

$$\sigma_1 \in \Sigma_1 \Rightarrow \varphi(\sigma_1) \subset \sigma_2 \in \Sigma_2$$

(for some σ_2).

Theorem

“Toric morphisms are the same as in the affine case” – that is, any toric morphism between X_{Σ_1} and X_{Σ_2} is given by a mapping of this form.
Weil Divisors

Definition

Let X be an irreducible variety. $\text{Div}(X)$ is the free abelian group generated by the irreducible codimension-1 subvarieties of X. The elements of $\text{Div}(X)$ are called **Weil divisors** on X.

Key: If R is a normal domain and P is a codimension-1 prime ideal of R, then the localization R_P is a DVR. This gives a way to talk about orders of zeros and poles along $V(P)$.

Example: Let $P = \langle x \rangle$ in $\mathbb{C}[x, y]$. If $f = \alpha/\beta \in \mathbb{C}(x, y)$, can find $n_i \in \mathbb{Z}$ such that $x^{n_1}|\alpha$ and $x^{n_1}|\beta$ (maximal). Then $\text{ord}_{\langle x \rangle}(f) = n_1 - n_2$.
Divisors on curves

The following special case may be familiar: Say X is a smooth, compact curve over \mathbb{C}, = compact Riemann surface

There are no nonconstant holomorphic functions on X

But can consider the meromorphic functions on X with poles bounded by a divisor $D = \sum a_i p_i$, $a_i \in \mathbb{N}$: $H^0(D) = \{ f \mid (f) + D \geq 0 \}$, a finite-dimensional \mathbb{C}-vector space

For any holomorphic 1-form ω on X, $\sum_{p \in X} \text{res}_p(f \omega) = 0$. Analysis of local Laurent series of f's in $H^0(D)$ gives Riemann’s inequality: $\dim H^0(D) \geq \deg(D) + 1 - g(X)$, and Riemann-Roch identifies the difference between left and right sides.
The divisor class group

Definition

The divisor class group is

\[\text{Cl}(X) = \text{Div}(X) / \sim, \]

where \(D_1 \sim D_2 \) if \(D_1 - D_2 = (f) \) for some \(f \in \mathbb{C}(X) \) ("linear equivalence").

Exercise: \(\text{Cl}(\mathbb{P}^1) = \mathbb{Z} \). (Hartshorne says: "\(\text{Cl}(X) \) is a very important invariant, in general not easy to calculate." This case is feasible, though!)
\(\text{Cl}(X_\Sigma) \) for a toric variety

Theorem

There is an exact sequence

\[
M \xrightarrow{A} \mathbb{Z}^{|\Sigma(1)|} \longrightarrow \text{Cl}(X_\Sigma) \longrightarrow 0
\]

where \(A \) is the matrix whose rows are the primitive lattice generators of the 1-dimensional cones of \(\Sigma \).

Sketch of proof: First \(\mathbb{Z}^{|\Sigma(1)|} \longrightarrow \text{Cl}(X_\Sigma) \longrightarrow \text{Cl}(T_N) \longrightarrow 0 \) is exact since \(X_\Sigma \) is the union of the “big torus” isomorphic to \(T_N \) and the closures of the orbits corresponding to the 1-dimensional cones. Since \(\mathbb{C}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}] \) is a UFD, \(\text{Cl}(T_N) = \{0\} \). For any \(m \in M \), \((\chi^m) = 0 \) in \(\text{Cl}(X_\Sigma) \). Hence \(M \subseteq \text{ker}(\mathbb{Z}^{|\Sigma(1)|} \longrightarrow \text{Cl}(X_\Sigma)) \).

Exercise: finish this proof.
An example

For $X_{\Sigma} = \mathbb{P}^2$ from the fan Σ considered earlier we have

$$
\begin{pmatrix}
1 & 0 \\
0 & 1 \\
-1 & -1
\end{pmatrix}
$$

$$
\mathbb{Z}^2 \rightarrow \mathbb{Z}^3 \rightarrow \text{Cl}(\mathbb{P}^2) \rightarrow 0
$$

Hence $\text{Cl}(\mathbb{P}^1) \cong \mathbb{Z}$.

Similarly, we have $\text{Cl}(\mathbb{P}^n) \cong \mathbb{Z}$ for all $n \geq 1$.
Another example

For $X_\Sigma = \mathbb{P}^1 \times \mathbb{P}^1$ from the fan Σ with 1-dimensional cones spanned by $\pm e_1, \pm e_2$ we have

$$
\begin{pmatrix}
1 & 0 \\
0 & 1 \\
-1 & 0 \\
0 & -1
\end{pmatrix}
$$

$\mathbb{Z}^2 \to \mathbb{Z}^4 \to \text{Cl}(\mathbb{P}^1 \times \mathbb{P}^1) \to 0$

Hence $\text{Cl}(\mathbb{P}^1 \times \mathbb{P}^1) \cong \mathbb{Z}^2$.

So now, when you see $\mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(a, b)$, you know what it means(!) (See Hartshorne, V, III.)
Divisors

Theorem

Let \(\rho \in \Sigma(1) \), and \(D_\rho \) the corresponding divisor. Then
\[\nu_{D_\rho}(x^m) = \langle m, u_\rho \rangle, \]
where \(u_\rho \) is the primitive lattice vector in that cone (the “first lattice point” on the ray).

Example: For \(\Sigma \) below

\[\sigma \]

\[\tau_1 \]

\[\tau_2 \]

\[e_1 \]

Take \(\tau_1 = \text{cone}(e_1) \). Then \(\nu_{\tau_1}(x^2y) = \langle (2, 1), (1, 0) \rangle = 2 \).
Divisors give maps

- Also *Cartier* = “locally principal” divisors. It is these that correspond to invertible sheaves = line bundles. If X_Σ is smooth, though, the two notions *coincide*, so we’ll blur the distinction(!)

- Given $D = \sum_{\rho \in \Sigma(1)} a_\rho D_\rho$, a basis of $H^0(\mathcal{O}_{X_\Sigma}(D))$ can be used to define a map $X_\Sigma \to \mathbb{P}^n$ for $n = \dim H^0(D) + 1$.

- We can ask whether the map is an isomorphism.

- We investigate methods for finding a basis of $H^0(\mathcal{O}_{X_\Sigma}(D))$ next.
The global sections

Theorem

\[
H^0 \left(\mathcal{O}_{\Sigma} \left(\sum_{\rho} a_{\rho} D_{\rho} \right) \right) = \text{Span}\{\chi^m | \langle m, u_{\rho} \rangle \geq -a_{\rho} \text{ for all } \rho \}\.
\]

Example: For \(\mathbb{P}^2 \) with \(\Sigma \):

Let \(D = 2D_1 \). \(H^0(2D_1) \) is spanned by the \(\chi^m \) for \(m = (a, b) \) satisfying \(\langle (a, b), (0, 1) \rangle \geq -2, \langle (a, b), (1, 0) \rangle \geq 0 \) and \(\langle (a, b), (-1, -1) \rangle \geq 0 \).
Example, continued
The inequalities \(b \geq -2, \ a \geq 0 \) and \(a + b \leq 0 \) define a polytope as follows

The lattice points are a translate of the lattice points in \(\text{conv}\{(0, 0), (2, 0), (0, 2)\} \). Hence we get a map to \(\mathbb{P}^5 \) whose image is the degree 2 Veronese image of \(\mathbb{P}^2 \) (same as that from \(\mathcal{O}_{\mathbb{P}^2}(2H) \)).
An exercise

For Σ as below

with the ray corresponding to D_4 equal to cone($-e_1 + 2e_2$). Compute $H^0(D_1 + D_2)$.
Support functions, ampleness

Definition

A **support function** for $D = \sum_{\rho} a_{\rho} D_{\rho}$ is a function $\varphi_D : |\Sigma| \to \mathbb{R}$ such that

- φ_D is linear on each cone in Σ
- $\varphi_D(u_{\rho}) = -a_{\rho}$ for all $\rho \in \Sigma(1)$

Theorem

- If Σ has convex support, and is full-dimensional, then D is basepoint-free $\iff \varphi_D$ is convex
- If Σ is complete, then D is ample $\iff \varphi_D$ is strictly convex
An Example, Demazure’s theorem

Consider $2D_1$ on \mathbb{P}^2.

[Draw graph of a support function on board(!)]

Theorem (Demazure)

*If Σ has convex support and D is basepoint-free, the $H^i(D) = 0$ for $i > 0$.***
The quotient construction

- Instead of patching affines to get \mathbb{P}^n, recall can build this toric variety globally as $(\mathbb{C}^{n+1} \setminus \{0\}) / \sim$
- Cox: There is an analog of this for any toric variety(!)
- Define $\mathbb{C}[x_\rho \mid \rho \in \Sigma(1)]$ and an ideal

$$B_\Sigma = \langle x^\hat{\sigma} = \prod_{\rho \notin \sigma(1)} x_\rho \mid \sigma \in \Sigma \rangle$$

- Analog of $\mathbb{C}^{n+1} \setminus \{0\}$ is $\mathbb{C}^{\vert \Sigma(1) \vert} \setminus V(B_\Sigma)$
Sanity check

- For the standard fan Σ defining \mathbb{P}^2, labeled like this:

 \begin{align*}
 x^{\sigma_1} &= x_3, \\
 x^{\sigma_2} &= x_2, \\
 x^{\sigma_3} &= x_1.
 \end{align*}

 So $V(B_{\Sigma}) = V(x_1, x_2, x_3)$ as expected.
The quotient map

- If $N_\mathbb{R}$ is spanned by the u_ρ for $\rho \in \Sigma(1)$, then

$$0 \longrightarrow M \longrightarrow \mathbb{Z}^{\Sigma(1)} \longrightarrow \text{Cl}(X_\Sigma) \longrightarrow 0$$

is exact.

- Hit this with $\text{Hom}_\mathbb{Z}(-, \mathbb{C}^*)$ get

$$0 \longrightarrow G \longrightarrow (\mathbb{C}^*)^{\Sigma(1)} \longrightarrow T_N$$

- Since $G \subseteq (\mathbb{C}^*)^{\Sigma(1)}$, G acts on $\mathbb{C}^{\Sigma(1)}$

- Modulo some (hard) technical details about quotients by algebraic group actions (GIT) we get X_Σ as the quotient modulo this action
Sanity check, II

For \mathbb{P}^2, the first exact sequence above is

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & -1 \end{pmatrix} : \mathbb{Z}^2 \longrightarrow \mathrm{Cl}(\mathbb{P}^2) \longrightarrow 0$$

After taking $\text{Hom}_{\mathbb{Z}}(-, \mathbb{C}^*)$, we have

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix} : (\mathbb{C}^*)^2 \longrightarrow (\mathbb{C}^*)^3 \longrightarrow \mathbb{C}^* \longrightarrow 0$$

And indeed \mathbb{C}^* acts on \mathbb{C}^3 via $a \sim \lambda a$.
Why is this important?

Theorem

Any coherent sheaf on a toric variety X_Σ comes from a finitely-generated $\text{Cl}(X_\Sigma)$-graded module over the “Cox ring”

$$S = \mathbb{C}[x_\rho \mid \rho \in \Sigma(1)]$$

(Generalizes a result of Serre in the case of $X_\Sigma = \mathbb{P}^n$, where the “Cox ring” is the same as the homogeneous coordinate ring $\mathbb{C}[x_0, \ldots, x_n]$.)

Translates abstract questions about sheaf cohomology into *concrete, computable* questions in multigraded commutative algebra(!)