Fans, Orbits, and Divisors on Toric Varieties Math in the Mountains Tutorial

Henry K. Schenck

Department of Mathematics University of Illinois, Urbana-Champaign

July 29-31, 2013

Outline

Fans

Definition

A fan is a collection Σ of SCRPC's in $N_{\mathbb{R}}$ such that

- If τ is a face of $\sigma \in \Sigma$, then $\tau \in \Sigma$
- if $\sigma_1, \sigma_2 \in \Sigma$, then $\sigma_1 \cap \sigma_2 \in \Sigma$ and is a face of each.

Example: Our picture from Hal's last talk:

shows a fan Σ with three 2-dimensional cones $\sigma_1, \sigma_2, \sigma_3$, three 1-dimensional cones (the rays $\sigma_{ij} = \sigma_i \cap \sigma_j$), and one 0-dimensional cone $\{0\}$.

The dual cones

We will also need to consider the duals of these cones in *M*:

Notice: $U_{\sigma_1} = \text{Spec } \mathbb{C}[x, y]$ and $U_{\sigma_2} = \text{Spec } \mathbb{C}[xy^{-1}, y^{-1}]$ Both are *contained in* $U_{\sigma_{12}} = \text{Spec } \mathbb{C}[x, y, y^{-1}]$. By localization:

$$\mathbb{C}[x,y] \longrightarrow \mathbb{C}[x,y]_{\langle 1/y \rangle} = \mathbb{C}[x,y,y^{-1}]$$
$$\mathbb{C}[xy^{-1},y^{-1}] \longrightarrow \mathbb{C}[xy^{-1},y^{-1}]_{\langle 1/y^{-1} \rangle} = \mathbb{C}[x,y,y^{-1}]$$

(This is the reason for the slightly weird σ^{\vee} construction: smaller faces \leftrightarrow smaller affines.)

Exercises

- Show that the above example gives a collection of affines that glue together to give P²
- Identify the cones and the gluing for the complete fans with 1-dimensional cones generated by
 - $\pm e_1, \pm e_2$ (four 2-dimensional cones, four 1-dimensional cones, one 0-dimensional cone).
 - *e*₁, *e*₂, −*e*₂, −*e*₁ + *ae*₂, where *a* is any integer ≥ 1 (four 2-dimensional cones, four 1-dimensional cones, one 0-dimensional cone).

Abstract toric varieties X_{Σ}

As in these examples, any fan Σ gives the combinatorial information to produce affine torics gluing together to form an *abstract toric variety* X_{Σ} .

Most work on toric varieties in algebraic geometry uses this definition.

All X_{Σ} are *normal* varieties (all affines U_{σ} come from saturated semigroups so coordinate rings are integrally closed). So not as general as some examples Y_{A} we saw in first talks.

Theorem (Orbit-cone correspondence)

In the toric variety X_{Σ} , there is a 1-1 correspondence

$$\{cones \ \sigma \in \Sigma\} \leftrightarrow \{T_N - orbits \ in \ X_{\Sigma}\}$$
$$\sigma \leftrightarrow O(\sigma) = \operatorname{Hom}_{\mathbb{Z}}(\sigma^{\perp} \cap M, \mathbb{C}^*)$$

Under this correspondence,

Key technical point: Uses identification $p \in U_{\sigma}$ as semigroup homomorphisms $S_{\sigma} \to \mathbb{C}$ via $p \mapsto (m \mapsto \chi^m(p))$.

If that didn't make sense, try this example, ... Let Σ be the following (non-complete) fan in $N = \mathbb{R}^2$:

The corresponding toric variety X_{Σ} is \mathbb{C}^2 ; covering by affines

$$U_{\sigma} = \operatorname{Spec} \mathbb{C}[x, y] = \mathbb{C}^{2}$$
$$U_{\tau_{1}} = \operatorname{Spec} \mathbb{C}[x, y, y^{-1}] = \mathbb{C} \times \mathbb{C}^{*}$$
$$U_{\tau_{2}} = \operatorname{Spec} \mathbb{C}[x, x^{-1}, y] = \mathbb{C}^{*} \times \mathbb{C}$$
$$U_{\{0\}} = \operatorname{Spec} \mathbb{C}[x, x^{-1}, y, y^{-1}] = \mathbb{C}^{*} \times \mathbb{C}^{*}$$

The $(\mathbb{C}^*)^2$ -orbits and how they correspond with the cones

Cone	Orbit	Dimension
σ	$\{(0,0)\}$	0
$ au_1$	$\mathbb{C}^* imes \{0\}$	1
$ au_2$	$\{0\} imes \mathbb{C}^*$	1
{0}	$(\mathbb{C}^*)^2$	2

Note: For instance for the cone τ_1 , $\tau_1^{\perp} \cap M \simeq \mathbb{Z}$ is the subgroup generated by e_2 . For the 0-dimensional cone $\{0\}$, we have $\{0\}^{\perp} \cap M \simeq \mathbb{Z}^2$.

Check:

$$U_{\tau_1} = O(\tau_1) \cup O(\{0\}) = (\mathbb{C}^* \times \{0\}) \cup (\mathbb{C}^* \times \mathbb{C}^*) = \mathbb{C}^* \times \mathbb{C}$$

Toric morphisms, II

If $\Sigma_1 \subset N_1$ and $\Sigma_2 \subset N_2$ are fans, then we say a \mathbb{Z} -linear $\varphi : N_1 \to N_2$ is *compatible* with the fans if it maps cones to cones:

$$\sigma_1 \in \Sigma_1 \Rightarrow \varphi(\sigma_1) \subset \sigma_2 \in \Sigma_2$$

(for some σ_2).

Theorem

"Toric morphisms are the same as in the affine case" – that is, any toric morphism between X_{Σ_1} and X_{Σ_2} is given by a mapping of this form.

Weil Divisors

Definition

Let X be an irreducible variety. Div(X) is the free abelian group generated by the irreducible codimension-1 subvarieties of X. The elements of Div(X) are called **Weil divisors** on X.

Key: If *R* is a normal domain and *P* is a codimension-1 prime ideal of *R*, then the localization R_P is a DVR. This gives a way to talk about orders of zeros and poles along V(P).

Example: Let $P = \langle x \rangle$ in $\mathbb{C}[x, y]$. If $f = \alpha/\beta \in \mathbb{C}(x, y)$, can find $n_i \in \mathbb{Z}$ such that $x^{n_1} | \alpha$ and $x^{n_1} | \beta$ (maximal). Then $\operatorname{ord}_{\langle x \rangle}(f) = n_1 - n_2$.

Divisors on curves

- The following special case may be familiar: Say X is a smooth, compact curve over C, = compact Riemann surface
- There are no nonconstant holomorphic functions on X
- But can consider the meromorphic functions on X with poles bounded by a divisor D = ∑ a_ip_i, a_i ∈ N: H⁰(D) = {f | (f) + D ≥ 0}, a finite-dimensional C-vector space
- For any holomorphic 1-form ω on X, $\sum_{p \in X} \operatorname{res}_p(f\omega) = 0$. Analysis of local Laurent series of f's in $H^0(D)$ gives Riemann's inequality: dim $H^0(D) \ge \deg(D) + 1 - g(X)$, and Riemann-Roch identifies the difference between left and right sides.

The divisor class group

Definition

The divisor class group is

$$\operatorname{Cl}(X) = \operatorname{Div}(X) / \sim,$$

where $D_1 \sim D_2$ if $D_1 - D_2 = (f)$ for some $f \in \mathbb{C}(X)$ ("linear equivalence").

Exercise: $Cl(\mathbb{P}^1) = \mathbb{Z}$. (Hartshorne says: "Cl(X) is a very important invariant, in general not easy to calculate." This case is feasible, though!)

$\operatorname{Cl}(X_{\Sigma})$ for a toric variety

Theorem

There is an exact sequence

$$M \xrightarrow{A} \mathbb{Z}^{|\Sigma(1)|} \longrightarrow \operatorname{Cl}(X_{\Sigma}) \longrightarrow 0$$

where A is the matrix whose rows are the primitive lattice generators of the 1-dimensional cones of Σ .

Sketch of proof: First $\mathbb{Z}^{|\Sigma(1)|} \to \operatorname{Cl}(X_{\Sigma}) \to \operatorname{Cl}(T_N) \to 0$ is exact since X_{Σ} is the union of the "big torus" isomorphic to T_N and the closures of the orbits corresponding to the 1-dimensional cones. Since $\mathbb{C}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ is a UFD, $\operatorname{Cl}(T_N) = \{0\}$. For any $m \in M$, $(\chi^m) = 0$ in $\operatorname{Cl}(X_{\Sigma})$. Hence $M \subseteq \ker(\mathbb{Z}^{|\Sigma(1)|} \to \operatorname{Cl}(X_{\Sigma}))$. Exercise: finish this proof.

An example

• For $X_{\Sigma} = \mathbb{P}^2$ from the fan Σ considered earlier we have

$$\mathbb{Z}^2 \xrightarrow[-1]{\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & -1 \end{pmatrix}} \mathbb{Z}^3 \longrightarrow \operatorname{Cl}(\mathbb{P}^2) \longrightarrow 0$$

Hence $\operatorname{Cl}(\mathbb{P}^1) \simeq \mathbb{Z}$.

• Similarly, we have $\operatorname{Cl}(\mathbb{P}^n) \simeq \mathbb{Z}$ for all $n \ge 1$.

Another example

For X_Σ = P¹ × P¹ from the fan Σ with 1-dimensional cones spanned by ±e₁, ±e₂ we have

$$\mathbb{Z}^{2} \xrightarrow{\begin{pmatrix} 1 & 0\\ 0 & 1\\ -1 & 0\\ 0 & -1 \end{pmatrix}} \mathbb{Z}^{4} \longrightarrow \operatorname{Cl}(\mathbb{P}^{1} \times \mathbb{P}^{1}) \longrightarrow 0$$

Hence $\operatorname{Cl}(\mathbb{P}^1 \times \mathbb{P}^1) \simeq \mathbb{Z}^2$.

So now, when you see O_{P¹×P¹}(a, b), you know what it means(!) (See Hartshorne, V, III.)

Divisors

Theorem

Let $\rho \in \Sigma(1)$, and D_{ρ} the corresponding divisor. Then $v_{D_{\rho}}(\chi^m) = \langle m, u_{\rho} \rangle$, where u_{ρ} is the primitive lattice vector in that cone (the "first lattice point" on the ray).

Example: For Σ below

take
$$\tau_1 = \text{cone}(e_1)$$
. Then $v_{\tau_1}(x^2y) = \langle (2, 1), (1, 0) \rangle = 2$.

Divisors give maps

- Also *Cartier* = "locally principal" divisors. It is these that correspond to invertible sheaves = line bundles. If X_Σ is smooth, though, the two notions *coincide*, so we'll blur the distinction(!)
- Given $D = \sum_{\rho \in \Sigma(1)} a_{\rho} D_{\rho}$, a basis of $H^0(\mathcal{O}_{X_{\Sigma}}(D))$ can be used to define a map $X_{\Sigma} \to \mathbb{P}^n$ for $n = \dim H^0(D) + 1$.
- We can ask whether the map is an isomorphism.
- We investigate methods for finding a basis of H⁰(O_{X_Σ}(D)) next.

The global sections

Theorem

$$H^{0}\left(\mathcal{O}_{X_{\Sigma}}\left(\sum_{\rho}a_{\rho}D_{\rho}\right)\right) = \operatorname{Span}\{\chi^{m} \mid \langle m, u_{\rho} \rangle \geq -a_{\rho} \text{ for all } \rho\}.$$

Example: For \mathbb{P}^2 with Σ :

Let $D = 2D_1$. $H^0(2D_1)$ is spanned by the χ^m for m = (a, b) satisfying $\langle (a, b), (0, 1) \rangle \ge -2$, $\langle (a, b), (1, 0) \rangle \ge 0$ and $\langle (a, b), (-1, -1) \rangle \ge 0$.

Example, continued

The inequalities $b \ge -2$, $a \ge 0$ and $a + b \le 0$ define a polytope as follows

The lattice points are a translate of the lattice points in $\operatorname{conv}\{(0,0),(2,0),(0,2)\}$. Hence we get a map to \mathbb{P}^5 whose image is the degree 2 Veronese image of \mathbb{P}^2 (same as that from $\mathcal{O}_{\mathbb{P}^2}(2H)$).

An exercise

Support functions, ampleness

Definition

A support function for $D = \sum_{\rho} a_{\rho} D_{\rho}$ is a function $\varphi_D : |\Sigma| \to \mathbb{R}$ such that

• φ_D is linear on each cone in Σ

•
$$\varphi_D(u_\rho) = -a_\rho$$
 for all $\rho \in \Sigma(1)$

Theorem

- If Σ has convex support, and is full-dimensional, then D is basepoint-free ⇔ φ_D is convex
- If Σ is complete, then D is ample $\Leftrightarrow \varphi_D$ is strictly convex

An Example, Demazure's theorem

```
Consider 2D_1 on \mathbb{P}^2.
```

[Draw graph of a support function on board(!)]

Theorem (Demazure)

If Σ has convex support and D is basepoint-free, the $H^i(D) = 0$ for i > 0.

The quotient construction

- Instead of patching affines to get ℙⁿ, recall can build this toric variety globally as (ℂⁿ⁺¹ \ {0})/ ~
- Cox: There is an analog of this for any toric variety(!)
- Define $\mathbb{C}[x_{\rho} \mid \rho \in \Sigma(1)]$ and an ideal

$$\mathcal{B}_{\Sigma} = \langle x^{\widehat{\sigma}} = \prod_{
ho
otin \sigma(1)} x_{
ho} \mid \sigma \in \Sigma
angle$$

• Analog of $\mathbb{C}^{n+1} \setminus \{0\}$ is $\mathbb{C}^{|\Sigma(1)|} \setminus V(B_{\Sigma})$

Sanity check

• For the standard fan Σ defining \mathbb{P}^2 , labeled like this:

we have $x^{\widehat{\sigma_1}} = x_3$, $x^{\widehat{\sigma_2}} = x_2$, $x^{\widehat{\sigma_3}} = x_1$. So $V(B_{\Sigma}) = V(x_1, x_2, x_3)$ as expected.

The quotient map

• If $N_{\mathbb{R}}$ is spanned by the u_{ρ} for $\rho \in \Sigma(1)$, then

$$0 \longrightarrow M \longrightarrow \mathbb{Z}^{|\Sigma(1)|} \longrightarrow \operatorname{Cl}(X_{\Sigma}) \longrightarrow 0$$

is exact.

• Hit this with $\operatorname{Hom}_{\mathbb{Z}}(-,\mathbb{C}^*)$ get

$$0 \longrightarrow G \longrightarrow (\mathbb{C}^*)^{|\Sigma(1)|} \longrightarrow T_N$$

• Since $G \subseteq (\mathbb{C}^*)^{|\Sigma(1)|}$, *G* acts on $\mathbb{C}^{|\Sigma(1)|}$

 Modulo some (hard) technical details about quotients by algebraic group actions (GIT) we get X_Σ as the quotient modulo this action

Sanity check, II

For \mathbb{P}^2 , the first exact sequence above is

$$\mathbb{Z}^{2} \xrightarrow{\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & -1 \end{pmatrix}} \longrightarrow \operatorname{Cl}(\mathbb{P}^{2}) \longrightarrow 0$$

After taking $\operatorname{Hom}_{\mathbb{Z}}(-, \mathbb{C}^*)$, we have

$$(\mathbb{C}^*)^2 \xleftarrow{\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}} (\mathbb{C}^*)^3 \xleftarrow{\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}} \mathbb{C}^* \longleftarrow 0$$

And indeed \mathbb{C}^* acts on \mathbb{C}^3 via $a \sim \lambda a$.

Why is this important?

Theorem

Any coherent sheaf on a toric variety X_{Σ} comes from a finitely-generated $\operatorname{Cl}(X_{\Sigma})$ -graded module over the "Cox ring"

 $S = \mathbb{C}[x_{\rho} \mid \rho \in \Sigma(1)]$

(Generalizes a result of Serre in the case of $X_{\Sigma} = \mathbb{P}^n$, where the "Cox ring" is the same as the homogeneous coordinate ring $\mathbb{C}[x_0, \ldots, x_n]$.)

Translates abstract questions about sheaf cohomology into *concrete, computable* questions in multigraded commutative algebra(!)