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The torus, characters

T = (C∗)n is an abelian group under coordinatewise
multiplication, and an algebraic variety. Ex.
C∗ ↔ V (xy − 1) ⊂ C2

A character of T is morphism of varieties and group
homomorphism χ : T → C∗

Any character of T has the form

(t1, . . . , tn) 7→
∏

i

tai
i

for some ai ∈ Z.
Write M = {(a1, . . . , an) | ai ∈ Z} ' Zn, the character
lattice of T .
Mnemonic: M for “monomial map”

Henry K. Schenck Affine and Projective Toric Varieties



Affine toric varieties
Projective toric varieties

One-parameter subgroups

A one-parameter subgroup of T is a morphism of varieties
and group homomorphism λ : C∗ → T
Any such mapping has the form

t 7→ (ta1 , . . . , tan) for some ai ∈ Z.

So we have a second lattice N ' Zn, the lattice of
1-parameter subgroups, and TN = N ⊗Z C∗ is the
associated torus
Given m ∈ M and n ∈ N we get χm : T → C∗ and
λn : C∗ → T
Gives a pairing 〈 , 〉 : M × N → Z via

χm ◦ λn : C∗ → C∗

t 7→ t〈m,n〉
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A theorem and a definition

Theorem (Sumihiro)
1 If T1 and T2 are tori and ϕ : T1 → T2 is a morphism of

varieties and group homomorphism, then im(ϕ) is a closed
torus in T2

2 If H is an irreducible subvariety of a torus T that is a
subgroup of T , then H is a torus.

Definition
An affine toric variety is an irreducible variety containing T as
a Zariski open subset, and such that the action of T on itself
extends to a morphism T × V → V.
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First Examples

T = (C∗)n itself
Cn, Pn, via the “obvious” inclusions T ⊂ Cn ⊂ Pn

The cuspidal cubic V (y2 − x3) ⊂ C2. The torus T in this
case is T = {(t2, t3) | t ∈ C∗}
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“Why do we care?”

The action of T lets us break things into simple bits –

The “three-fold path:"
Lattice points (free abelian groups of finite rank)
Toric ideals
Affine semigroups

If TN has character lattice M and A = {a1, . . . , an} ⊂ M, let

ϕA : T → Cn

t 7→ (χa1(t), . . . , χan(t))
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Lattice points and the variety YA

Here is the formal definition of the variety defined by a
monomial parametrization:

Definition

YA = ϕA(T ), where the bar is Zariski closure.

Proposition

YA is an affine toric variety with character lattice Z(A). The
dimension of YA is the rank of the lattice Z(A).

Example: M = Z, A = {2, 3} gives YA = V (y2 − x3)
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The ideal of YA

For A as above, consider Zn → M defined by ei 7→ ai .
Let L be the kernel of this map, so 0 → L → Zn → M is
exact
Write each ` ∈ L as ` = `+ − `− (that is, `+ =

∑
`i>0 `iei

and `− = −
∑

`i<0 `iei )

Then x`+ − x`− vanishes on the image of ϕA, hence is in
I(YA).
In fact we have,

Theorem

I(YA) = 〈xα − xβ | α, β ∈ Nn, α− β ∈ L〉.
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Toric ideals

As we saw in the statistics talk, ideals of this form have a
name:

Definition
A toric ideal is a prime lattice ideal

〈xα − xβ | α, β ∈ Nn, α− β ∈ L〉

for L ⊂ Zn.

In fact, the binomial form of the generators is enough:

Theorem
I ⊂ C[x1, . . . , xn] is toric ⇔ I is prime and generated by
binomials.
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Two Examples

Consider Z2 → Z defined by columns of A = (2 3). (Note:
we’ll sometimes be sloppy about what A represents – it
could be the set {2, 3} or the 1× 2 integer matrix with
those as the columns(!))
The kernel is L = 〈(3 − 2)〉
Gives binomial x3 − y2, which generates the toric ideal
Similarly if

A =

(
2 1 0
0 1 2

)
then L = 〈(1 − 2 1)〉 and we get I = 〈xz − y2〉, so V (I) is a
quadric cone.
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Affine semigroups

A semigroup is a set with a binary operation satisfying all
of the group axioms except for the existence of inverses.
Affine semigroups are abelian, finitely generated,
contained in a lattice, operation written as +

If S is a semigroup, we can define a semigroup algebra

C[S] = Span{xα : α ∈ S} with xα · xβ = xα+β

It follows that

Theorem
C[S] is an integral domain, finitely generated as a C-algebra,
hence corresponds to an affine variety Spec C[S]. This variety
is toric; if S = NA for A ⊂ M, then it is isomorphic to YA.
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An example

Let S be the affine semigroup in Z2 generated by
(2, 0), (1, 1), (0, 2).

The semigroup algebra C[S] = C[s2, st , t2]

The corresponding variety Spec C[S] is the affine toric variety
YA for A = {(2, 0), (1, 1), (0, 2)}.

This is the quadric cone V (xz − y2) from before.
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Three ways to describe affine toric varieties

From the last example, the next statement should be plausible
at least:

Theorem
The following are equivalent:

V is an affine toric variety
V = YA for some A ⊂ M
V = V (I) for a toric ideal
V = Spec C[S] for an affine semigroup S.

Henry K. Schenck Affine and Projective Toric Varieties



Affine toric varieties
Projective toric varieties

Cones

Let F ⊂ NR = N ⊗Z R be a finite set. We define the cone
spanned by F to be:

cone(F ) =

{∑
u∈F

λuu | λu ≥ 0

}

The convex hull of S is

conv(F ) =

{∑
u∈F

λuu | λu ≥ 0,
∑
u∈F

λu = 1

}
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Example
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Figure: F = {(1, 0), (1, 2)} in Z2

cone(F ) is the region between the two rays; conv(F ) is the
thicker vertical line segment.
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The dual cone

Given a cone σ in NR, the dual cone is

σ∨ = {n ∈ MR | 〈m, n〉 ≥ 0∀n ∈ σ}

For σ = cone({(1, 0), (1, 2)}) as on the previous slide, the dual
cone is

σ∨ = cone({(0, 1), (2,−1)})

6

HHHj
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Some terminology

A cone σ = cone(F ) is rational if F ⊂ N; polyhedral if F is
finite (no “ice cream cones!”); strongly convex if the largest
linear subspace contained in σ is {0}
RPC = rational polyhedral cone, SCRPC = strongly
convex, rational, polyhedral cone
A SCRPC is smooth if the minimal generators of the rays
of the cone are a subset of a Z-basis of N
A SCRPC is simplicial if the minimal generators are a
subset of a basis of NQ = N ⊗Z Q
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An important fact

Theorem (Gordan’s Lemma)

If σ is a RPC in N, then Sσ = σ∨ ∩M is a finitely-generated
semigroup.

Proof: σ∨ is also an RPC, so σ∨ = cone(T ) for T a finite subset
of M. The parallelotope K = {

∑
m∈T λmm | 0 ≤ λm < 1} is

bounded, so |K ∩M| is finite and T ∪ (K ∩M) ⊂ Sσ. The key
point is T ∪ (K ∩M) generates Sσ since if w ∈ Sσ,

w =
∑

m

λmm =
∑

bλmcm +
∑

(λm − bλmc)m

The first term is in T , the second is in K . //
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A corollary, saturated semigroups

Let Sσ = σ∨ ∩M; by the previous result:

Corollary

Let σ ⊂ NR be an RPC. Then Spec C[Sσ] is an affine toric
variety, denoted Uσ. It has dimension n = rank(N) if and only if
σ is a SCRPC.

An affine semigroup S ⊂ M is said to be saturated if
km ∈ S ⇒ m ∈ S for k ∈ N.
Example: S = 〈(4, 0), (3, 1), (1, 3), (0, 4)〉 is not saturated
(why not?)
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Normality, smoothness, etc.

Theorem
Let V be an affine toric variety with torus TN . The following are
equivalent:

V is normal (coordinate ring is integrally closed)
V = Spec C[S] for a saturated affine semigroup S
V = Spec C[Sσ] for a SCRPC σ ⊂ NR

Theorem
Uσ is a smooth variety if and only if σ is a smooth cone.
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Points, morphisms

A point p ∈ Spec C[S] ↔ a semigroup homomorphism γ in
Homsg(S, C) via

m ∈ S 7→ χm(p) ∈ C.

Intrinsically, if p = m 7→ γ(m), then for all t ∈ T ,
t · p : m 7→ χm(t)γ(m).

Definition
A morphism V1 → V2 is toric if C[S2] → C[S1] is induced by a
semigroup homomorphism S2 → S1.

Theorem
ϕ : V1 → V2 is toric if and only if ϕ(TN1) ⊆ TN2 and ϕ restricts to
a group homomorphism on TN1 . Toric morphisms are
T -equivariant: ϕ(t · p) = ϕ(t)ϕ(p).
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The basics

Pn = (Cn+1 \ {0})/ ∼ where (x0, . . . , xn) ∼ λ · (x0, . . . , xn)
for all λ ∈ C∗

The torus in Pn is the complement of V (x0 · · · xn)

Projective parametric toric varieties:

Definition
If A = {m1, . . . , mn+1} ⊂ M, we have

TN
ϕA−−→ (C∗)n+1 −→ Cn+1 −→ Pn

The image is the projective toric variety XA = ϕA(TN).
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Two subtle points

Since 1 → C∗ → (C∗)n+1 → TN → 1 is exact, the character
lattice MPn is {(a0, . . . , an) |

∑
i ai = 0} = Zn+1/Z(1, . . . , 1)

Two rather different parametrizations can give the same
projective toric variety:
Example A: M = {0, 1, . . . , n} in Z gives
C∗ → (C∗)n+1 → Pn defined by t 7→ (1, t , . . . , tn)

Example B: M = {(n, 0), (n − 1, 1), . . . , (0, n)} ⊂ Z2 gives
(s, t) 7→ (sn, sn−1t , . . . , tn)

The projective varieties in A and B are the same, but the
affine varieties are not (parametrization of YA is not
homogeneous; for YB, it is)
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Connection with affine torics

Definition

Given A ⊂ M, let Z1(A) = {
∑

i aimi |
∑

i ai = 0}

Theorem
The following are equivalent

YA is the affine cone over the projective variety XA

I(YA) is a homogeneous ideal
There exists a u ∈ N and k ∈ N such that 〈mi , u〉 = k for all
i . (Note: this says the mi all lie on a hyperplane in M.
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Consequences

Theorem

The character lattice of XA is Z1(A). This has rank
rank Z(A)− 1 if the mi all lie on a hyperplane and rank Z(A)
otherwise.

Example: If A consists of the columns of(
4 3 1 0
0 1 3 4

)
,

then rankZ1(A) = 1 and XA is a curve.
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Affine charts

In Pn, let Ui = {xi 6= 0} – a covering of Pn by affines
isomorphic to Cn.
If X ⊂ Pn is a variety, let Xi = X ∩ Ui .
In toric case, since xi = χmi , passing to
Ui = Spec C[x0/xi , . . . , xn/xi ] is equivalent to considering
Ai = {mj −mi | j 6= i}
Have

Theorem
XA ∩ Ui = YAi = Spec C[Si ], where Si = NAi .

In fact, can do better:

XA =
⋃

mi a vertex of conv(A)

XA ∩ Ui
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An example, projective normality

For the rational quartic from
A = {(4, 0), (3, 1), (1, 3), (0, 4)}, we have

XA ∩ U0 = Spec C[1, t/s, t3/s3, t4/s4] = C[t/s]

So XA ∩ U0 is C.
Similarly for U3 ⇒ a smooth, projective, rational curve.
Applying a standard notion from algebraic geometry:

Definition
XA is said to be projectively normal if the affine cone YA is
normal (for toric, ⇔ saturated)

Exercise: the rational quartic above is not projectively
normal
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Polytopes

A polytope P can be defined either as the convex hull of a
finite set of points, or as a compact intersection of finitely
many half-spaces
The lattice polytope

uu
u

uu u@
@

@

is
conv({(0, 0), (2, 0), (0, 2)}

and
{x ≥ 0} ∩ {y ≥ 0} ∩ {x + y ≤ 2}.
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Polytope terminology

Definition
Let P be a lattice polytope in M

A hyperplane H = {m | 〈m, nF 〉 = −aF} is a supporting
hyperplane if P ⊂ {m | 〈m, nF 〉 ≥ −aF}
P ∩ H for a supporting hyperplane is a face of P;
dimension of a face is dimension of the affine span
P is a simplex if P has dim(P) + 1 vertices
P is simplicial if each facet (codim 1 face) is a simplex
P is simple if each vertex lies in dim(P) facets.
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Two examples

Figure: simplicial 6, 8, 12 Figure: simple 8, 12, 6

Henry K. Schenck Affine and Projective Toric Varieties



Affine toric varieties
Projective toric varieties

Normal polytopes

The definition is:

Definition
A lattice polytope P ⊂ MR is normal if

(kP ∩M) + (`P ∩M) = (k + `)P ∩M

for all k , ` ≥ 1. (Note: The ⊆ here is “automatic.”)

Exercise: P = conv({0, e1, e2, e1 + e2 + 2e3}) is not normal.
A nice fact:

Theorem
If P is a lattice polytope with dim(P) = n ≥ 2, then kP is normal
for all k ≥ n − 1.
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The toric variety of a polytope

The key idea here is that charts ⇔ vertices of P. Given a lattice
polytope P ⊂ M we get a cone and a semigroup from each
vertex mi of P as follows:

Definition
The vertex cone is

σi = cone(P ∩M −mi)
∨ ⊆ N

(Note: The notation P ∩M −mi means: translate P ∩M to
place mi at the origin!)
The semigroup is

SP,v = N(P ∩M − v) ⊆ M
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An example will make all clear, we hope ...

Let P be the following polytope from before:

uu
u

uu u@
@

@

and take v = 2e2 = (0, 2). The cone σi is cone({e1,−e1 − e2}):

�
�	

-
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Example, continued

The lattice points in M making up the semigroup SP,v are
shown below: top vertex is translated to the origin:

uu
uu

uu
u

uu u
?

@
@

@
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@
@R
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The affine charts

Theorem
XP∩M ∩ Ui = Spec C[σ∨i ∩M]

Definition
P is very ample if for all vertices v, SP,v is saturated.

Exercise: Let P = conv{0, e1, e2, e1 + e2 + 2e3} from before.
Show |P ∩M| = 4 so XP∩M → P3. Show that XP∩M is not
smooth. Show that P is not very ample.
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How it all fits together, ...

Let’s draw in the vertex cones at each vertex of the lattice
polytope in the previous example:

rr
r

rr r@
@

@
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��	
-
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��	

If we “reassemble” these cones with vertices at the origin, we
see they fit together to cover NR = R2. Will return to this in the
next talk(!)

-
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The toric variety of a polytope P

Note that we have only defined XP∩M so far.

Definition
Let P be a lattice polytope in M. The toric variety of P
XP = XkP∩M where kP is very ample.

Corollary

For an n-dimensional polytope, (n − 1)P always gives an
embedding of XP in P(V ).
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Final comments

Warning: There are smooth, complete varieties that are
not projective (Shafarevich example for surfaces). Such
examples exist for toric varieties, too, but only in
dimensions ≥ 3.
Motivated by the last example,

Definition
The normal fan of a polytope P is the collection of cones glued
like a simplicial complex, generated by the inward normals to
the faces.

The point is that P and kP have the same normal fan, so
they give, intrinsically the same (abstract) toric variety, to
be described in the next talk.
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