# Affine and Projective Toric Varieties Math in the Mountains Tutorial

Henry K. Schenck

Department of Mathematics University of Illinois, Urbana-Champaign

July 29-31, 2013

### Outline





### The torus, characters

- *T* = (ℂ\*)<sup>n</sup> is an abelian group under coordinatewise multiplication, *and* an algebraic variety. Ex.
   ℂ\* ↔ *V*(*xy* − 1) ⊂ ℂ<sup>2</sup>
- A *character* of *T* is morphism of varieties and group homomorphism χ : *T* → C<sup>\*</sup>
- Any character of T has the form

$$(t_1,\ldots,t_n)\mapsto\prod_i t_i^{a_i}$$

for some  $a_i \in \mathbb{Z}$ .

- Write  $M = \{(a_1, \ldots, a_n) \mid a_i \in \mathbb{Z}\} \simeq \mathbb{Z}^n$ , the character *lattice* of *T*.
- Mnemonic: M for "monomial map"

# **One-parameter subgroups**

- A one-parameter subgroup of *T* is a morphism of varieties and group homomorphism λ : C<sup>\*</sup> → *T*
- Any such mapping has the form

$$t\mapsto (t^{a_1},\ldots,t^{a_n})$$
 for some  $a_i\in\mathbb{Z}.$ 

- So we have a second lattice N ≃ Z<sup>n</sup>, the lattice of 1-parameter subgroups, and T<sub>N</sub> = N ⊗<sub>Z</sub> C\* is the associated torus
- Given  $m \in M$  and  $n \in N$  we get  $\chi^m : T \to \mathbb{C}^*$  and  $\lambda^n : \mathbb{C}^* \to T$
- Gives a pairing  $\langle , \rangle : M \times N \to Z$  via

$$\chi^{m} \circ \lambda^{n} : \mathbb{C}^{*} \to \mathbb{C}^{*}$$
$$t \mapsto t^{\langle m, n \rangle}$$

# A theorem and a definition

### Theorem (Sumihiro)

- If T<sub>1</sub> and T<sub>2</sub> are tori and φ : T<sub>1</sub> → T<sub>2</sub> is a morphism of varieties and group homomorphism, then im(φ) is a closed torus in T<sub>2</sub>
- If H is an irreducible subvariety of a torus T that is a subgroup of T, then H is a torus.

#### Definition

An **affine toric variety** is an irreducible variety containing T as a Zariski open subset, and such that the action of T on itself extends to a morphism  $T \times V \rightarrow V$ .

### **First Examples**

- $T = (\mathbb{C}^*)^n$  itself
- $\mathbb{C}^n$ ,  $\mathbb{P}^n$ , via the "obvious" inclusions  $T \subset \mathbb{C}^n \subset \mathbb{P}^n$
- The cuspidal cubic V(y<sup>2</sup> − x<sup>3</sup>) ⊂ C<sup>2</sup>. The torus T in this case is T = {(t<sup>2</sup>, t<sup>3</sup>) | t ∈ C\*}

### "Why do we care?"

The action of T lets us break things into simple bits -

- The "three-fold path:"
  - Lattice points (free abelian groups of finite rank)
  - Toric ideals
  - Affine semigroups
- If  $T_N$  has character lattice M and  $\mathcal{A} = \{a_1, \ldots, a_n\} \subset M$ , let

$$arphi_{\mathcal{A}}: \mathcal{T} 
ightarrow \mathbb{C}^n$$
  
 $t \mapsto (\chi^{a_1}(t), \dots, \chi^{a_n}(t))$ 

# Lattice points and the variety $Y_A$

• Here is the formal definition of the variety defined by a monomial parametrization:

### Definition

 $Y_{A} = \overline{\varphi_{A}(T)}$ , where the bar is Zariski closure.

#### Proposition

 $Y_{\mathcal{A}}$  is an affine toric variety with character lattice  $\mathbb{Z}(\mathcal{A})$ . The dimension of  $Y_{\mathcal{A}}$  is the rank of the lattice  $\mathbb{Z}(\mathcal{A})$ .

• Example: 
$$M = \mathbb{Z}$$
,  $\mathcal{A} = \{2,3\}$  gives  $Y_{\mathcal{A}} = V(y^2 - x^3)$ 

# The ideal of $Y_{\mathcal{A}}$

- For  $\mathcal{A}$  as above, consider  $\mathbb{Z}^n \to M$  defined by  $e_i \mapsto a_i$ .
- Let *L* be the kernel of this map, so  $0 \to L \to \mathbb{Z}^n \to M$  is exact
- Write each  $\ell \in L$  as  $\ell = \ell_+ \ell_-$  (that is,  $\ell_+ = \sum_{\ell_i > 0} \ell_i e_i$ and  $\ell_- = -\sum_{\ell_i < 0} \ell_i e_i$ )
- Then  $x^{\ell_+} x^{\ell_-}$  vanishes on the image of  $\varphi_A$ , hence is in  $I(Y_A)$ .
- In fact we have,

#### Theorem

$$I(Y_{\mathcal{A}}) = \langle x^{\alpha} - x^{\beta} \mid \alpha, \beta \in \mathbb{N}^{n}, \alpha - \beta \in L \rangle.$$

# **Toric ideals**

 As we saw in the statistics talk, ideals of this form have a name:

#### Definition

A toric ideal is a prime lattice ideal

$$\langle \mathbf{x}^{\alpha} - \mathbf{x}^{\beta} \mid \alpha, \beta \in \mathbb{N}^{n}, \alpha - \beta \in L \rangle$$

for  $L \subset \mathbb{Z}^n$ .

• In fact, the binomial form of the generators is enough:

#### Theorem

 $I \subset \mathbb{C}[x_1, \ldots, x_n]$  is toric  $\Leftrightarrow I$  is prime and generated by binomials.

# **Two Examples**

Consider Z<sup>2</sup> → Z defined by columns of A = (2 3). (Note: we'll sometimes be sloppy about what A represents – it could be the set {2,3} or the 1 × 2 integer matrix with those as the columns(!))

• The kernel is 
$$L = \langle (3 - 2) \rangle$$

- Gives binomial  $x^3 y^2$ , which generates the toric ideal
- Similarly if

$$\mathcal{A} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$

then  $L = \langle (1 - 2 1) \rangle$  and we get  $I = \langle xz - y^2 \rangle$ , so V(I) is a quadric cone.

# Affine semigroups

- A semigroup is a set with a binary operation satisfying all of the group axioms except for the existence of inverses.
- Affine semigroups are abelian, finitely generated, contained in a lattice, operation written as +
- If S is a semigroup, we can define a semigroup algebra

$$\mathbb{C}[S] = \operatorname{Span}\{x^{\alpha} : \alpha \in S\} \text{ with } x^{\alpha} \cdot x^{\beta} = x^{\alpha+\beta}$$

It follows that

#### Theorem

 $\mathbb{C}[S]$  is an integral domain, finitely generated as a  $\mathbb{C}$ -algebra, hence corresponds to an affine variety Spec  $\mathbb{C}[S]$ . This variety is toric; if  $S = \mathbb{N}A$  for  $A \subset M$ , then it is isomorphic to  $Y_A$ .

### An example

Let S be the affine semigroup in  $\mathbb{Z}^2$  generated by (2,0), (1,1), (0,2).

The semigroup algebra  $\mathbb{C}[S] = \mathbb{C}[s^2, st, t^2]$ 

The corresponding variety Spec  $\mathbb{C}[S]$  is the affine toric variety  $Y_{\mathcal{A}}$  for  $\mathcal{A} = \{(2,0), (1,1), (0,2)\}.$ 

This is the quadric cone  $V(xz - y^2)$  from before.

### Three ways to describe affine toric varieties

From the last example, the next statement should be plausible at least:

#### Theorem

The following are equivalent:

• V is an affine toric variety

• 
$$V=Y_{\mathcal{A}}$$
 for some  $\mathcal{A}\subset M$ 

- V = V(I) for a toric ideal
- $V = \operatorname{Spec} \mathbb{C}[S]$  for an affine semigroup S.

### Cones

Let F ⊂ N<sub>ℝ</sub> = N ⊗<sub>ℤ</sub> ℝ be a finite set. We define the *cone* spanned by F to be:

$$\operatorname{cone}(F) = \left\{ \sum_{u \in F} \lambda_u u \mid \lambda_u \ge 0 \right\}$$

• The convex hull of S is

$$\operatorname{conv}(F) = \left\{ \sum_{u \in F} \lambda_u u \mid \lambda_u \ge 0, \sum_{u \in F} \lambda_u = 1 \right\}$$

### Example



Figure: 
$$F = \{(1,0), (1,2)\}$$
 in  $\mathbb{Z}^2$ 

cone(F) is the region between the two rays; conv(F) is the thicker vertical line segment.

### The dual cone

Given a cone  $\sigma$  in  $N_{\mathbb{R}}$ , the dual cone is

$$\sigma^{\vee} = \{ n \in M_{\mathbb{R}} \mid \langle m, n \rangle \ge \mathbf{0} \forall n \in \sigma \}$$

For  $\sigma = \text{cone}(\{(1,0), (1,2)\})$  as on the previous slide, the dual cone is

$$\sigma^{\vee} = \operatorname{cone}(\{(0, 1), (2, -1)\})$$



### Some terminology

- A cone σ = cone(F) is rational if F ⊂ N; polyhedral if F is finite (no "ice cream cones!"); strongly convex if the largest linear subspace contained in σ is {0}
- RPC = rational polyhedral cone, SCRPC = strongly convex, rational, polyhedral cone
- A SCRPC is *smooth* if the minimal generators of the rays of the cone are a subset of a Z-basis of N
- A SCRPC is *simplicial* if the minimal generators are a subset of a basis of N<sub>Q</sub> = N ⊗<sub>Z</sub> Q

# An important fact

#### Theorem (Gordan's Lemma)

If  $\sigma$  is a RPC in N, then  $S_{\sigma} = \sigma^{\vee} \cap M$  is a finitely-generated semigroup.

Proof:  $\sigma^{\vee}$  is also an RPC, so  $\sigma^{\vee} = \operatorname{cone}(T)$  for *T* a finite subset of *M*. The parallelotope  $K = \{\sum_{m \in T} \lambda_m m \mid 0 \le \lambda_m < 1\}$  is bounded, so  $|K \cap M|$  is finite and  $T \cup (K \cap M) \subset S_{\sigma}$ . The key point is  $T \cup (K \cap M)$  generates  $S_{\sigma}$  since if  $w \in S_{\sigma}$ ,

$$w = \sum_{m} \lambda_{m} m = \sum \lfloor \lambda_{m} \rfloor m + \sum (\lambda_{m} - \lfloor \lambda_{m} \rfloor) m$$

The first term is in T, the second is in K. //

# A corollary, saturated semigroups

• Let  $S_{\sigma} = \sigma^{\vee} \cap M$ ; by the previous result:

### Corollary

Let  $\sigma \subset N_{\mathbb{R}}$  be an RPC. Then Spec  $\mathbb{C}[S_{\sigma}]$  is an affine toric variety, denoted  $U_{\sigma}$ . It has dimension  $n = \operatorname{rank}(N)$  if and only if  $\sigma$  is a SCRPC.

- An affine semigroup S ⊂ M is said to be saturated if km ∈ S ⇒ m ∈ S for k ∈ N.
- Example: S = ((4,0), (3,1), (1,3), (0,4)) is not saturated (why not?)

# Normality, smoothness, etc.

#### Theorem

Let V be an affine toric variety with torus  $T_N$ . The following are equivalent:

- V is normal (coordinate ring is integrally closed)
- $V = \operatorname{Spec} \mathbb{C}[S]$  for a saturated affine semigroup S
- $V = \operatorname{Spec} \mathbb{C}[S_{\sigma}]$  for a SCRPC  $\sigma \subset N_{\mathbb{R}}$

#### Theorem

 $U_{\sigma}$  is a smooth variety if and only if  $\sigma$  is a smooth cone.

# Points, morphisms

A point  $p \in \text{Spec } \mathbb{C}[S] \leftrightarrow$  a semigroup homomorphism  $\gamma$  in  $\text{Hom}_{sq}(S, \mathbb{C})$  via

 $m \in S \mapsto \chi^m(p) \in \mathbb{C}.$ 

Intrinsically, if  $p = m \mapsto \gamma(m)$ , then for all  $t \in T$ ,  $t \cdot p : m \mapsto \chi^m(t)\gamma(m)$ .

#### Definition

A morphism  $V_1 \to V_2$  is **toric** if  $\mathbb{C}[S_2] \to \mathbb{C}[S_1]$  is induced by a semigroup homomorphism  $S_2 \to S_1$ .

#### Theorem

 $\varphi : V_1 \to V_2$  is toric if and only if  $\varphi(T_{N_1}) \subseteq T_{N_2}$  and  $\varphi$  restricts to a group homomorphism on  $T_{N_1}$ . Toric morphisms are *T*-equivariant:  $\varphi(t \cdot p) = \varphi(t)\varphi(p)$ .

# The basics

- $\mathbb{P}^n = (\mathbb{C}^{n+1} \setminus \{0\}) / \sim$  where  $(x_0, \ldots, x_n) \sim \lambda \cdot (x_0, \ldots, x_n)$  for all  $\lambda \in \mathbb{C}^*$
- The torus in  $\mathbb{P}^n$  is the complement of  $V(x_0 \cdots x_n)$
- Projective parametric toric varieties:

### Definition

If 
$$\mathcal{A} = \{m_1, \ldots, m_{n+1}\} \subset M$$
, we have

$$T_N \xrightarrow{\varphi_{\mathcal{A}}} (\mathbb{C}^*)^{n+1} \longrightarrow \mathbb{C}^{n+1} \longrightarrow \mathbb{P}^n$$

The image is the projective toric variety  $X_A = \overline{\varphi_A(T_N)}$ .

#### Two subtle points

- Since  $1 \to \mathbb{C}^* \to (\mathbb{C}^*)^{n+1} \to T_N \to 1$  is exact, the character lattice  $M_{\mathbb{P}^n}$  is  $\{(a_0, \ldots, a_n) \mid \sum_i a_i = 0\} = \mathbb{Z}^{n+1}/\mathbb{Z}(1, \ldots, 1)$
- Two rather different parametrizations can give the same projective toric variety:
- Example A:  $M = \{0, 1, ..., n\}$  in  $\mathbb{Z}$  gives  $\mathbb{C}^* \to (\mathbb{C}^*)^{n+1} \to \mathbb{P}^n$  defined by  $t \mapsto (1, t, ..., t^n)$
- Example B:  $M = \{(n, 0), (n 1, 1), \dots, (0, n)\} \subset \mathbb{Z}^2$  gives  $(s, t) \mapsto (s^n, s^{n-1}t, \dots, t^n)$
- The projective varieties in A and B are the same, but the affine varieties are not (parametrization of Y<sub>A</sub> is not homogeneous; for Y<sub>B</sub>, it is)

# **Connection with affine torics**

#### Definition

Given 
$$\mathcal{A} \subset M$$
, let  $\mathbb{Z}^1(\mathcal{A}) = \{\sum_i a_i m_i \mid \sum_i a_i = 0\}$ 

#### Theorem

The following are equivalent

- $Y_A$  is the affine cone over the projective variety  $X_A$
- *I*(*Y*<sub>A</sub>) is a homogeneous ideal
- There exists a u ∈ N and k ∈ N such that ⟨m<sub>i</sub>, u⟩ = k for all i. (Note: this says the m<sub>i</sub> all lie on a hyperplane in M.

# Consequences

#### Theorem

The character lattice of  $X_A$  is  $\mathbb{Z}^1(A)$ . This has rank rank  $\mathbb{Z}(A) - 1$  if the  $m_i$  all lie on a hyperplane and rank  $\mathbb{Z}(A)$  otherwise.

**Example**: If  $\mathcal{A}$  consists of the columns of

$$\begin{pmatrix} 4 & 3 & 1 & 0 \\ 0 & 1 & 3 & 4 \end{pmatrix}$$

then  $\operatorname{rank}\mathbb{Z}^1(\mathcal{A}) = 1$  and  $X_{\mathcal{A}}$  is a curve.

# Affine charts

- In ℙ<sup>n</sup>, let U<sub>i</sub> = {x<sub>i</sub> ≠ 0} a covering of ℙ<sup>n</sup> by affines isomorphic to ℂ<sup>n</sup>.
- If  $X \subset \mathbb{P}^n$  is a variety, let  $X_i = X \cap U_i$ .
- In toric case, since  $x_i = \chi^{m_i}$ , passing to  $U_i = \text{Spec } \mathbb{C}[x_0/x_i, \dots, x_n/x_i]$  is equivalent to considering  $A_i = \{m_j - m_i \mid j \neq i\}$
- Have

### Theorem

$$X_{\mathcal{A}} \cap U_i = Y_{\mathcal{A}_i} = \operatorname{Spec} \mathbb{C}[S_i]$$
, where  $S_i = \mathbb{N}\mathcal{A}_i$ .

• In fact, can do better:

$$X_{\mathcal{A}} = igcup_{m_i ext{ a vertex of } \operatorname{conv}(\mathcal{A})} X_{\mathcal{A}} \cap U_i$$

# An example, projective normality

• For the rational quartic from  $A = \{(4, 0), (3, 1), (1, 3), (0, 4)\},$  we have

 $X_A \cap U_0 = \operatorname{Spec} \mathbb{C}[1, t/s, t^3/s^3, t^4/s^4] = \mathbb{C}[t/s]$ 

- So  $X_{\mathcal{A}} \cap U_0$  is  $\mathbb{C}$ .
- Similarly for  $U_3 \Rightarrow$  a smooth, projective, rational curve.
- Applying a standard notion from algebraic geometry:

# Definition

 $X_A$  is said to be **projectively normal** if the affine cone  $Y_A$  is normal (for toric,  $\Leftrightarrow$  saturated)

• Exercise: the rational quartic above is not projectively normal

# Polytopes

- A polytope P can be defined either as the convex hull of a finite set of points, or as a compact intersection of finitely many half-spaces
- The lattice polytope



is

$$conv(\{(0,0),(2,0),(0,2)\}$$

and

$$\{x \ge 0\} \cap \{y \ge 0\} \cap \{x + y \le 2\}.$$

# Polytope terminology

### Definition

Let P be a lattice polytope in M

- A hyperplane H = {m | ⟨m, n<sub>F</sub>⟩ = −a<sub>F</sub>} is a supporting hyperplane if P ⊂ {m | ⟨m, n<sub>F</sub>⟩ ≥ −a<sub>F</sub>}
- P ∩ H for a supporting hyperplane is a face of P; dimension of a face is dimension of the affine span
- P is a simplex if P has dim(P) + 1 vertices
- P is simplicial if each facet (codim 1 face) is a simplex
- *P* is **simple** if each vertex lies in dim(*P*) facets.

#### **Two examples**



Figure: simplicial 6, 8, 12



Figure: simple 8, 12, 6

# Normal polytopes

• The definition is:

# Definition

A lattice polytope  $P \subset M_{\mathbb{R}}$  is **normal** if

$$(kP \cap M) + (\ell P \cap M) = (k + \ell)P \cap M$$

for all  $k, \ell \geq 1$ . (Note: The  $\subseteq$  here is "automatic.")

- Exercise:  $P = conv(\{0, e_1, e_2, e_1 + e_2 + 2e_3\})$  is not normal.
- A nice fact:

#### Theorem

If P is a lattice polytope with dim(P) =  $n \ge 2$ , then kP is normal for all  $k \ge n - 1$ .

# The toric variety of a polytope

The key idea here is that charts  $\Leftrightarrow$  vertices of *P*. Given a lattice polytope  $P \subset M$  we get a cone and a semigroup from each vertex  $m_i$  of *P* as follows:

#### Definition

The vertex cone is

$$\sigma_i = \operatorname{cone}(\boldsymbol{P} \cap \boldsymbol{M} - \boldsymbol{m}_i)^{\vee} \subseteq \boldsymbol{N}$$

(Note: The notation  $P \cap M - m_i$  means: translate  $P \cap M$  to place  $m_i$  at the origin!)

• The semigroup is

$$S_{P,v} = \mathbb{N}(P \cap M - v) \subseteq M$$

#### An example will make all clear, we hope ...

Let *P* be the following polytope from before:



and take  $v = 2e_2 = (0, 2)$ . The cone  $\sigma_i$  is cone({ $e_1, -e_1 - e_2$ }):



# Example, continued

The lattice points in *M* making up the semigroup  $S_{P,v}$  are shown below: top vertex is translated to the origin:



# The affine charts

#### Theorem

 $X_{P\cap M}\cap U_i = \operatorname{Spec} \mathbb{C}[\sigma_i^{\vee} \cap M]$ 

#### Definition

*P* is **very ample** if for all vertices v,  $S_{P,v}$  is saturated.

Exercise: Let  $P = \operatorname{conv}\{0, e_1, e_2, e_1 + e_2 + 2e_3\}$  from before. Show  $|P \cap M| = 4$  so  $X_{P \cap M} \to \mathbb{P}^3$ . Show that  $X_{P \cap M}$  is not smooth. Show that P is not very ample.

# How it all fits together, ...

Let's draw in the vertex cones at each vertex of the lattice polytope in the previous example:



If we "reassemble" these cones with vertices at the origin, we see they fit together to cover  $N_{\mathbb{R}} = \mathbb{R}^2$ . Will return to this in the next talk(!)



# The toric variety of a polytope P

Note that we have only defined  $X_{P \cap M}$  so far.

### Definition

Let P be a lattice polytope in M. The toric variety of P  $X_P = X_{kP \cap M}$  where kP is very ample.

#### Corollary

For an n-dimensional polytope, (n-1)P always gives an embedding of  $X_P$  in  $\mathbb{P}(V)$ .

# **Final comments**

- Warning: There are smooth, complete varieties that are not projective (Shafarevich example for surfaces). Such examples exist for toric varieties, too, but only in dimensions ≥ 3.
- Motivated by the last example,

### Definition

The **normal fan** of a polytope *P* is the collection of cones glued like a simplicial complex, generated by the inward normals to the faces.

• The point is that *P* and *kP* have the same normal fan, so they give, intrinsically the same (abstract) toric variety, to be described in the next talk.