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What is algebraic statistics?

Study of probability models and techniques for statistical
inference using methods from algebra and algebraic
geometry
First occurrence of term: in the book [PRW]
Connections especially with genomics, mathematical
biology: see especially [PS]
Now a very active field, well-represented at the SIAM
conference later this week
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Example 0

Key idea: probabilities for discrete random variables often
depend polynomially on some parameters
So can think of parametrized families of distributions
Example: If X is a binomial random variable based on n
trials, with success probability θ, then X takes values in
{0, 1, . . . , n} with probabilities given by:

P(X = k) = pk (θ) =

(
n
k

)
θk (1− θ)n−k

Gives:

ϕ : R → Rn+1

θ 7→ (p0(θ), p1(θ), . . . , pn(θ))
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Example, continued

Since
∑

i pi(θ) = 1, the image ϕ(R) is a curve in the
hyperplane

∑
i pi = 1

If θ ∈ [0, 1], then ϕ(θ) ∈ ∆n+1, the probability simplex
defined by

∑
i pi = 1, and pi ≥ 0 for i = 0, . . . , n.

Question: What curve is it?
For instance, with n = 2, we get the curve
V (p2

1 − 4p0p2, p0 + p1 + p2 − 1), a smooth conic.
For general n, we get a rational normal curve of degree n
(but with not exactly the usual parametrization because of
the binomial coefficient factors)
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Probability models

For the purposes of this talk, a probability model will be a
parametrized family of probability distributions for a
random variable, or joint distributions for collections
If a (collection of) random variable(s) X with values s ∈ S
has P(X = s) = gs(θ1, . . . , θn) for some parameters θj ,
then as above, we can consider the mapping

ϕ : Rn → RS

θ = (θ1, . . . , θn) 7→ (gs(θ) : s ∈ S)
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Probability models, cont.

We will also assume that the gi are polynomial, or at worst
rational functions of θ.
By standard results, this implies that ϕ(Rn) is a subset of
some algebraic variety in RS

Given such a ϕ, the corresponding model is the set

ϕ(Rn) ∩∆

where ∆ is the probability simplex in RS .
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Example 1

Suppose X is a categorical random variable with three
possible values {1, 2, 3} and Y is a second variable of the
same type.
Assume in addition that X , Y are independent, which is
equivalent to saying that
P(X = x and Y = y) = P(X = x)P(Y = y) for all
x , y ∈ {1, 2, 3}.
Then writing P(X = x) = px and P(Y = y) = qy , we can
arrange the 9 values needed to specify the joint probability
function as a 3× 3 matrix and we obtain

P =

p1q1 p1q2 p1q3
p2q1 p2q2 p2q3
p3q1 p3q2 p3q3

 =

p1
p2
p3

 (
q1 q2 q3

)
.
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Example 1, cont.

Every such matrix P has rank 1
Conversely, any matrix

P =

p11 p12 p13
p21 p22 p23
p31 p32 p33


of rank 1 has this form.
We also can see implicit equations for a variety in
M3×3(R) = R9 containing all such matrices:

pijpkl − pilpkj = 0

for all pairs of rows 1 ≤ i ≤ k ≤ 3 and all pairs of columns
1 ≤ j ≤ l ≤ 3.
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Example 1, concluded

The corresponding parametrization is

ϕ : R4
p1,p2,q1,q2

→ M3×3(R)

(where p3 = 1− p1 − p2, and similarly q3 = 1− q1 − q2)
ϕ(R6) ∩∆ is called the 3× 3 independence model – there
are similar k × ` independence models for all k , `

If px ≥ 0 and qy ≥ 0 with
∑

x px = 1 =
∑

y qy then the sum
of the entries in the 3× 3 matrix is also 1.
The variety involved in the model in the 3× 3 case can be
identified with Segre embedding of P2 × P2 in P8, defined
by the quadratic binomials given on the last slide.
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Example 2 – Jukes-Cantor

Important application of these ideas is probability
models for DNA sequence evolution
The Jukes-Cantor DNA model describes
probabilities of changes in going from an
ancestor sequence to some collection of
descendant sequences.
Model on a K13 “claw tree” considers 3 one-step
descendant sequences: given by a mapping
ϕ : R3 → R64

πi , i = 1, 2, 3 are the probabilities of a DNA letter
(A,C,G,T) in the ancestor (root) changing to a
different letter in going from the root to
descendant (leaf) i (these are same for all
changes, but vary with i).

s s ss
�
�

A
A
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Example 2, cont.

Model assumes A,C,G,T occur randomly, uniformly
distributed in root sequence
Write θi = 1− 3πi for the probability of not changing in
descendant sequence i .
What happens for each of the three leaves also subject to
an independence assumption.
Get probabilities for each possible collection of outcomes
in the leaves. For instance,

P(AAA) = P(AAA|rt = A)P(rt = A) + P(AAA|rt 6= A)P(rt 6= A)

=
1
4
(θ1θ2θ3 + 3π1π2π3).
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Example 2, cont.

Among the entries of ϕ(π1, π2, π3), there are only 5
different polynomials.
So the model has a condensed parametric form using

p123 = θ1θ2θ3 + 3π1π2π3

pdis = 6θ1π2π3 + 6θ2π1π3 + 6θ3π1π2 + 6π1π2π3

p12 = 3θ1θ2π3 + 3π1π2θ3 + 6π1π2π3

p13 = 3θ1θ3π2 + 3π1π3θ2 + 6π1π2π3

p23 = 3θ2θ3π1 + 3π2π3θ1 + 6π1π2π3

Here p123 = probability of observing the same letter in all
three descendants, pdis = probability of 3 distinct letters in
the descendants, and pij = probability of equal letters in
descendants i , j and something different in descendant k .

John B. Little Toric Varieties in Algebraic Statistics



Models in algebraic statistics
Toric models

Maximum likelihood estimation and inference

Example 2, cont.

So we have the condensed model parametrization
ϕ : R3 → R5.
Since the expressions for p123, etc. are polynomials in πi ,
the image is a variety of dimension 3 in a hyperplane in R5

The Jukes-Cantor model is the intersection of that variety
with the 4-dimensional probability simplex in that
hyperplane
From dimensional considerations, should have one
equation of model in addition to
p123 + pdis + p12 + p13 + p23 = 1: it’s a complicated
polynomial of degree 3 in the variables p123, pdis and pij .
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Did you notice something?

In Examples 0 and 1 above, note that the implicit equations
for the models we were describing were given by binomials
of the form xα − xβ for some multi-indices α, β

As we know, the corresponding ideals are examples of
toric ideals and the varieties defined by the implicit
equations are toric varieties
This is not true, though, for the Jukes-Cantor model in
Example 2.
Examples 0 and 1 are instances of toric models,
essentially because we can give the parametric equations
in monomial form (possibly by using “extra variables” – e.g.
in Example 0, could write p = θ, q = 1− p, and then have
nearly the standard monomial parametrization of the
rational normal curve)
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The general definition

Let A = (aij) be a d ×m non-negative integer matrix, with
equal column sums ⇔ (1, . . . , 1) ∈ Rm is in the real
rowspace of A.
Write Aj for the j th column of A and

θAj = θ
a1j
1 · · · θadj

d

for the corresponding monomial in parameters θ1, . . . , θd .
Given c1, . . . , cm > 0 consider ϕ : Rd → Rm defined by

θ 7→ 1∑m
j=1 cjθ

Aj

(
c1θ

A1 , . . . , cmθAm
)

The toric model associated to A (and c) is ϕ(Rd
>0) ∩∆.
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Comments

Note: with this formulation, ϕ(Rd) is contained in the
hyperplane

∑m
j=1 pj = 1 because of the denominators in

the components of ϕ.
θi > 0 implies ϕ(θ) is in the probability simplex ∆ so
intersecting with ∆ is not actually necessary.
The cj are included to allow for numerical weight factors as
in Example 0.
Exercise: What is the matrix A for the 3× 3, or more
generally k × `, independence model?
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Comments, cont.

But, the “equal column sums” assumption on A means that
all the monomials θAj have the same total degree and the
implicit equations of the corresponding toric variety will
come from homogeneous polynomials, so we can
essentially ignore the denominators (or view ϕ(θ) as
homogeneous coordinates of a point in Pm−1).
In a toric model, the logarithms of the probabilities (more
precisely, the numerators of the components of ϕ) are
linear functions of the log(θi);
Toric models have a long history in “mainstream” statistics;
these are often called log-linear models.
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An observation

Even if a model is not toric, it might be possible to “make it
toric” by a reparametrization. For instance, for the
Jukes-Cantor model in Example 2 above – not a random
fact, an application of finite Fourier transforms (!)
Exercise: Can check that

q111 = (θ1 − π1)(θ2 − π2)(θ3 − π3)

q110 = (θ1 − π1)(θ2 − π2)(θ3 + 3π3)

q101 = (θ1 − π1)(θ2 + 3π2)(θ3 − π3)

q011 = (θ1 + 3π1)(θ2 − π2)(θ3 − π3)

q000 = (θ1 + 3π1)(θ2 + 3π2)(θ3 + 3π3)

are linear combinations of p123, pdis, pij , and monomials in
linear combinations of the original parameters.
Exercise: What is the corresponding toric variety?
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The toric ideal of a model

Let A be a matrix as above and consider the toric variety
XA = ϕ(Rd

>0) with ci = 1 for all i
By general results we saw before, the vanishing ideal of
XA is the toric ideal

IA = 〈pe+ − pe− : e+, e− ∈ Nm,Ae+ = Ae−〉

(a finite set of such binomials generates the same ideal, by
the Hilbert basis theorem)
If some ci 6= 1, then the ideal of the corresponding toric
variety can be found by a simple scaling (change of
variables)
Any finite set of generators for this ideal gives what is
known as a Markov basis
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“Real statistics”

Describing a toric model (such as the binomial model from
Example 0 or the 3× 3 independence model from Example
1) is only the first step for statisticians
Given data (for example some collection of sampled values
of the variables involved), we could ask: Assuming the
model, what parameters would best explain that data?
And, perhaps: Is the corresponding model a reasonable
description for the data?
More precisely, we might want to set up a test to decide
whether it is reasonable to reject the hypothesis that the
model does not fit the data.
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The sufficient statistics

The likelihood function is the probability of observing a
given collection of counts u = (u1, . . . , um) under the
model, as a function of the model parameters:
L(u|θ) =

∏m
j=1 ϕj(θ)

uj

A collection of statistics T (u) is sufficient for the problem of
estimating θ if the interaction between θ and u in the
likelihood function is entirely through T (u):
The general factorization criterion from the theory of
estimators says that T (u) is sufficient for θ if
L(u|θ) = f (T (u), θ) · g(u)

Exercise: The factorization criterion shows that Au is
sufficient for θ.
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Maximum likelihood estimators; hypothesis testing

A standard approach here is to look for the parameter
values that maximize the likelihood – called the MLE
parameter values, θ̂.
Given the MLE we get MLE estimates ûj for the data
values and consider the χ2-type formula:

X (v) =
∑
j=1

(ûj − vj)
2

û2
j

If the proportion of the vectors v in the fiber A−1(Au) with
X (v) ≥ X (u) is sufficiently small we would reject the
hypothesis that the model does not fit the data.
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How Markov bases are used

The problem here is that for all but quite small problems,
the fiber A−1(Au) is too large to enumerate explicitly.
However given any u0 in the fiber and a Markov basis as
above {xe+ − xe−}, note that u0 + e+ − e− is also in the
fiber
Hence, we can do a random walk through the fiber using
the Markov basis in this way to estimate the necessary
proportion (Metropolis-Hastings)
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Toric models are “very nice” for MLE

Main reason: Toric models give likelihood functions where
all critical points θ̂ have p̂ = ϕ(θ̂) in a very special position
in the variety describing the model.
Moreover, there can be only one critical point, and can
show that is necessarily the MLE (a result called Birch’s
theorem in statistics)
Moreover, and best of all, in some cases (e.g. the
independence models) there are analytic expressions for
the MLE’s θ̂ in terms of easily computable information such
as marginals in the data (“contingency tables”)
You will derive much of this in general in exercises; let’s
work out a simple special case to see the ideas involved.
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MLE example

Say we are working with the toric model given by the 2× 4
matrix

A =

(
3 2 1 0
0 1 2 3

)
In parametric form, ϕ(θ1, θ2) =

(p0, p1, p2, p3)
t = (θ3

1, θ2
1θ2

2, θ1θ
2
2, θ3

2)t

The corresponding toric variety is the cone over the
standard twisted cubic:

V (p0p2 − p2
1, p0p3 − p1p2, p1p3 − p2

2)

We can think of this as a model giving probability
distributions for random variables with values in {0, 1, 2, 3}.
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Finding the MLE

Say we have made N = 100 observations and observed
counts u = (13, 35, 29, 23)t .
The likelihood function here is

L = (θ3
1)13(θ2

1θ2)
35(θ1θ

2
2)29(θ3

2)23

= θ138
1 θ162

2 .

The exponents here are the entries in the vector b = Au
(do you see why?)
We want to maximize this, but subject to the constraint that
ϕ(θ1, θ2) is a “legal” vector of probabilities:

q = θ3
1 + θ2

1θ2 + θ1θ
2
2 + θ3

2 = 1
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Finding the MLE, cont.
This is a constrained optimization problem, so can use the
method of Lagrange multipliers: Any critical point of L
restricted to the constraint set satisfies ∂L

∂θi
= λ ∂q

∂θi
for

i = 1, 2 and some constant λ

Because L is a monomial (hence homogeneous) and q is
homogeneous, if we take the usual Lagrange equations
and multiply by the first by θ1 and the second by θ2, we get

138L = λ(3θ3
1 + 2θ2

1θ2 + θ1θ
2
2)

162L = λ(θ2
1θ2 + 2θ1θ

2
2 + 3θ3

2),

or (in vector format), writing p̂ for ϕ(θ̂), where θ̂ is the MLE
for θ = (θ1, θ2)

t ,

L · b = L · Au = λ · Ap̂ (1)
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Finding the MLE, cont.

Since (1, 1, 1, 1) is in the real rowspace of A, we can
multiply both sides here by some vector to obtain
L · 100 = λ (since

∑
ui = N = 100 and (1, 1, 1, 1)p̂ = 1).

Substituting back into (1), we obtain

Ap̂ =
1

100
b =

(
138
100

,
162
100

)
Or explicitly

3θ3
1 + 2θ2

1θ2 + θ1θ
2
2 =

138
100

θ2
1θ2 + 2θ1θ

2
2 + 3θ3

2 =
162
100
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Finding the MLE, cont.

These equations can be solved numerically, yielding a
unique real solution:

θ̂1
.
= .5992 and θ̂2

.
= .6597

The equation Ap = 1
100b defines a polyhedron that meets

the model variety ϕ(R2
>0) in exactly the one point we found

approximately above.
The general proof for this uses the same setup and
reasoning as the proof of the properties of the (“algebraic”)
moment map for the corresponding toric variety (will
discuss this in a later talk)
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MLE degree of a model

How many real or complex roots can there be for the ML
equations for a model? The abstract of [CHKS]: “Maximum
likelihood estimation in statistics leads to the problem of
maximizing a product of powers of polynomials. We study the
algebraic degree of the critical equations of this optimization
problem. This degree is related to the number of bounded
regions in the corresponding arrangement of hypersurfaces,
and to the Euler characteristic of the complexified complement.
Under suitable hypotheses, the maximum likelihood degree
equals the top Chern class of a sheaf of logarithmic differential
forms. Exact formulae in terms of degrees and Newton
polytopes are given for polynomials with generic coefficients.”
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References for further study

CHKS Catanese, Hosten, Khetan, and Sturmfels The maximum
likelihood degree, Amer. J. Math. 128 (2006), 671-697

DSS Drton, Sturmfels, and Sullivant, Lectures on Algebraic
Statistics, Springer, 2008

CLS Cox, Little, and Schenck, Toric Varieties, AMS, 2011
PRW Pistone, Riccomagno, and Wynn, Algebraic Statistics:

Computational Commutative Algebra in Statistics,
Chapman and Hall, 2000

PS Pachter and Sturmfels, Algebraic Statistics for
Computational Biology, Cambridge U. Press, 2005
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