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Models in algebraic statistics

What is algebraic statistics?

@ Study of probability models and techniques for statistical
inference using methods from algebra and algebraic
geometry

@ First occurrence of term: in the book [PRW]

@ Connections especially with genomics, mathematical
biology: see especially [PS]

@ Now a very active field, well-represented at the SIAM
conference later this week
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Models in algebraic statistics

Example 0

@ Key idea: probabilities for discrete random variables often
depend polynomially on some parameters
@ So can think of parametrized families of distributions

@ Example: If X is a binomial random variable based on n
trials, with success probability 4, then X takes values in
{0,1,..., n} with probabilities given by:

P(X = k) = p(6) = (:) 0k(1 — 0)"*
@ Gives:

¢ : R — RM!
0 — (,00(9), P1 (9), s ,,On(e))
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Models in algebraic statistics

Example, continued

@ Since ) ; p;(9) = 1, the image ¢(R) is a curve in the
hyperplane 3", p; = 1

@ If § € [0,1], then p(0) € A+, the probability simplex
defined by > .pi=1,and p; >0fori=0,...,n.

@ Question: What curve is it?

@ Forinstance, with n = 2, we get the curve
V(p2 — 4pop2, Po + p1 + p2 — 1), @ smooth conic.

@ For general n, we get a rational normal curve of degree n
(but with not exactly the usual parametrization because of
the binomial coefficient factors)
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Models in algebraic statistics

Probability models

@ For the purposes of this talk, a probability model will be a
parametrized family of probability distributions for a
random variable, or joint distributions for collections

@ If a (collection of) random variable(s) X with values s € S
has P(X = s) = gs(04, ..., 0,) for some parameters 6;,

@ then as above, we can consider the mapping
0 :R" - RS
0=(01,...,0n) — (gs(0) : s€S)
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Models in algebraic statistics

Probability models, cont.
@ We will also assume that the g; are polynomial, or at worst
rational functions of 6.

@ By standard results, this implies that o(R") is a subset of
some algebraic variety in R®

@ Given such a ¢, the corresponding model is the set

p(R")NA

where A is the probability simplex in RS.
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Models in algebraic statistics

Example 1

@ Suppose X is a categorical random variable with three
possible values {1,2,3} and Y is a second variable of the
same type.

@ Assume in addition that X, Y are independent, which is
equivalent to saying that
P(X=xand Y =y)=P(X=x)P(Y =y) forall
x,y €{1,2,3}.

@ Then writing P(X = x) = px and P(Y = y) = qy, we can
arrange the 9 values needed to specify the joint probability
function as a 3 x 3 matrix and we obtain

P11 P1G2 P1Gs3 P
P=|pgi PG P2z |=|P2| (01 % G).

P3g1 P3G2 P3g3 P3
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Models in algebraic statistics

Example 1, cont.

@ Every such matrix P has rank 1
@ Conversely, any matrix

P11 P12 P13
P=|p21 P22 P23
P31 P32 P33

of rank 1 has this form.

@ We also can see implicit equations for a variety in
Ms,3(R) = R® containing all such matrices:

PiiPki — PiiPkj = 0

for all pairs of rows 1 < < k < 3 and all pairs of columns
1<j<I<8.

John B. Little Toric Varieties in Algebraic Statistics



Models in algebraic statistics

Example 1, concluded

@ The corresponding parametrization is

4
¢ Ry poarge — Maxs(R)

(where p3 =1 —py — po, and similarly g3 =1 — g1 — Qo)

@ p(R8) N A is called the 3 x 3 independence model — there
are similar k x ¢ independence models for all k, ¢

® lfpx>0andq, > 0with>°, px=1=3%_, gy then the sum
of the entries in the 3 x 3 matrix is also 1.

@ The variety involved in the model in the 3 x 3 case can be
identified with Segre embedding of P? x P2 in P8, defined
by the quadratic binomials given on the last slide.
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Models in algebraic statistics

Example 2 — Jukes-Cantor

@ Important application of these ideas is probability
models for DNA sequence evolution

@ The Jukes-Cantor DNA model describes
probabilities of changes in going from an
ancestor sequence to some collection of
descendant sequences.

@ Model on a Ki3 “claw tree” considers 3 one-step
descendant sequences: given by a mapping
Q: RS N R64

@ w;, i =1,2,3 are the probabilities of a DNA letter
(A,C,G,T) in the ancestor (root) changing to a
different letter in going from the root to
descendant (leaf) i (these are same for all
changes, but vary with /).
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Models in algebraic statistics

Example 2, cont.
@ Model assumes A,C,G, T occur randomly, uniformly
distributed in root sequence

@ Write 6; = 1 — 3r; for the probability of not changing in
descendant sequence i.

@ What happens for each of the three leaves also subject to
an independence assumption.

@ Get probabilities for each possible collection of outcomes
in the leaves. For instance,

P(AAA) = P(AAA|rt = A)P(rt = A) + P(AAA|rt # A)P(rt £ A)

1
= 1(01 0203 + 374 7T27T3).
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Models in algebraic statistics

Example 2, cont.
@ Among the entries of p(m1, w2, m3), there are only 5
different polynomials.
@ So the model has a condensed parametric form using

P123 = 610203 + 3mymam3

Pais = 601mom3 + 60013 + 603710 + BT TS
P12 = 3616om3 + 3mymals + 6wy ToTs

P13 = 3610312 + w730 + 6T

Po3 = 30s03m1 + 3momzlhy + 671 ToTs

@ Here pyo3 = probability of observing the same letter in all
three descendants, pgis = probability of 3 distinct letters in
the descendants, and p; = probability of equal letters in
descendants i, j and something different in descendant k.
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Models in algebraic statistics

Example 2, cont.

@ So we have the condensed model parametrization
¢ :R3 = RS,

@ Since the expressions for py23, etc. are polynomials in 7,
the image is a variety of dimension 3 in a hyperplane in R®

@ The Jukes-Cantor model is the intersection of that variety
with the 4-dimensional probability simplex in that
hyperplane

@ From dimensional considerations, should have one
equation of model in addition to
P123 + Pais + P12 + P13 + pe3 = 1: it's @ complicated
polynomial of degree 3 in the variables pi23, pgis and pj;.
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Toric models

Did you notice something?

@ In Examples 0 and 1 above, note that the implicit equations
for the models we were describing were given by binomials
of the form x® — x” for some multi-indices «, 3

@ As we know, the corresponding ideals are examples of
toric ideals and the varieties defined by the implicit
equations are toric varieties

@ This is not true, though, for the Jukes-Cantor model in
Example 2.

@ Examples 0 and 1 are instances of toric models,
essentially because we can give the parametric equations
in monomial form (possibly by using “extra variables” — e.g.
in Example 0, could write p = 6, g = 1 — p, and then have
nearly the standard monomial parametrization of the
rational normal curve)
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Toric models

The general definition

@ Let A = (a;) be a d x mnon-negative integer matrix, with
equal column sums < (1,...,1) € R™is in the real
rowspace of A.

@ Write A; for the jth column of A and

oA = ef‘/ ...9%

d
for the corresponding monomial in parameters 64, ..., 0.
@ Given cy,...,cn > 0 consider ¢ : R — R™ defined by
1
0— ——— (c %, ..., ¢ GAm)
Yo Gt 1 K

@ The toric model associated to A (and c) is go(]Rg’o) NA.
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Toric models

Comments

@ Note: with this formulation, ¢(R?) is contained in the
hyperplane Z}L p; = 1 because of the denominators in
the components of .

@ ¢; > 0 implies ¢(0) is in the probability simplex A so
intersecting with A is not actually necessary.

@ The ¢; are included to allow for numerical weight factors as
in Example O.

@ Exercise: What is the matrix A for the 3 x 3, or more
generally k x ¢, independence model?
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Toric models

Comments, cont.

@ But, the “equal column sums” assumption on A means that
all the monomials #% have the same total degree and the
implicit equations of the corresponding toric variety will
come from homogeneous polynomials, so we can
essentially ignore the denominators (or view ¢(6) as
homogeneous coordinates of a point in P~ 1).

@ In a toric model, the logarithms of the probabilities (more
precisely, the numerators of the components of ¢) are
linear functions of the log(;);

@ Toric models have a long history in “mainstream” statistics;
these are often called log-linear models.
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Toric models

An observation

@ Even if a model is not toric, it might be possible to “make it
toric” by a reparametrization. For instance, for the
Jukes-Cantor model in Example 2 above — not a random
fact, an application of finite Fourier transforms (!)

@ Exercise: Can check that

G111 = (01 — m1)(02 — m2) (03 — m3)
G110 = (01 — m1)(02 — m2) (63 + 373)
G101 = (01 — m1)(02 + 3m2)(05 — 73)
Jo11 = (01 + 3m1) (02 — m2)(03 — m3)
Qooo = (01 + 3m1) (02 + 3m2)(03 + 33)

are linear combinations of p123, Pgis, Pjj, @and monomials in

linear combinations of the original parameters.
@ Exercise: What is the corresponding toric variety?
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Toric models

The toric ideal of a model
@ Let A be a matrix as above and consider the toric variety
Xa = o(RY,) with ¢; = 1 for all i
@ By general results we saw before, the vanishing ideal of
X4 is the toric ideal

[q = (p® —p® :e;,e_ eN" Ae, = Ae_)

(a finite set of such binomials generates the same ideal, by
the Hilbert basis theorem)

@ If some ¢; # 1, then the ideal of the corresponding toric
variety can be found by a simple scaling (change of
variables)

@ Any finite set of generators for this ideal gives what is
known as a Markov basis
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Maximum likelihood estimation and inference

“Real statistics”

@ Describing a toric model (such as the binomial model from
Example 0 or the 3 x 3 independence model from Example
1) is only the first step for statisticians

@ Given data (for example some collection of sampled values
of the variables involved), we could ask: Assuming the
model, what parameters would best explain that data?
And, perhaps: Is the corresponding model a reasonable
description for the data?

@ More precisely, we might want to set up a test to decide
whether it is reasonable to reject the hypothesis that the
model does not fit the data.
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Maximum likelihood estimation and inference

The sufficient statistics

@ The likelihood function is the probability of observing a
given collection of counts u = (uy, ..., un) under the
model, as a function of the model parameters:

L(ulf) =TT ¢;(0)%

@ A collection of statistics T(u) is sufficient for the problem of
estimating 6 if the interaction between 6 and u in the
likelihood function is entirely through T(u):

@ The general factorization criterion from the theory of
estimators says that T(u) is sufficient for 6 if
L(ul0) = f(T(u),0) - g(u)

@ Exercise: The factorization criterion shows that Au is
sufficient for 6.
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Maximum likelihood estimation and inference

Maximum likelihood estimators; hypothesis testing

@ A standard approach here is to look for the parameter
values that maximize the likelihood — called the MLE

~

parameter values, 6.

@ Given the MLE we get MLE estimates uj; for the data
values and consider the y?-type formula:

X(v) = Z (4 52‘0)2
J

=1

@ If the proportion of the vectors v in the fiber A~"(Au) with
X(v) > X(u) is sufficiently small we would reject the
hypothesis that the model does not fit the data.

John B. Little Toric Varieties in Algebraic Statistics



Maximum likelihood estimation and inference

How Markov bases are used

@ The problem here is that for all but quite small problems,
the fiber A~"(Au) is too large to enumerate explicitly.

@ However given any ug in the fiber and a Markov basis as
above {x¢+ — x®-}, note that up + e; — e_ is also in the
fiber

@ Hence, we can do a random walk through the fiber using
the Markov basis in this way to estimate the necessary
proportion (Metropolis-Hastings)
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Maximum likelihood estimation and inference

Toric models are “very nice” for MLE

@ Main reason: Toric models give likelihood functions where
all critical points 6 have p = ¢(6) in a very special position
in the variety describing the model.

@ Moreover, there can be only one critical point, and can
show that is necessarily the MLE (a result called Birch’s
theorem in statistics)

@ Moreover, and best of all, in some cases (e.g. the
independence models) there are analytic expressions for
the MLE’s @ in terms of easily computable information such
as marginals in the data (“contingency tables”)

@ You will derive much of this in general in exercises; let’s
work out a simple special case to see the ideas involved.

John B. Little Toric Varieties in Algebraic Statistics



Maximum likelihood estimation and inference

MLE example

@ Say we are working with the toric model given by the 2 x 4
matrix
3210
A= <o 12 3)
@ In parametric form, (61, 62) =
(po, p1, P2, p3)" = (65, 65065, 6163, 63)"

@ The corresponding toric variety is the cone over the
standard twisted cubic:

V(pop2 — P5, Pops — P12, P1Ps — P3)

@ We can think of this as a model giving probability
distributions for random variables with values in {0, 1,2, 3}.
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Maximum likelihood estimation and inference

Finding the MLE

@ Say we have made N = 100 observations and observed
counts u = (13, 35,29, 23)".

@ The likelihood function here is

L = (69)"°(6502)%(6165)°°(65)%°
— 0} 389;62.

@ The exponents here are the entries in the vector b = Au
(do you see why?)

@ We want to maximize this, but subject to the constraint that
©(01,02) is a “legal” vector of probabilities:

q =03+ 650, + 0105 + 63 =1
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Maximum likelihood estimation and inference

Finding the MLE, cont.

@ This is a constrained optimization problem, so can use the
method of Lagrange multipliers: Any critical point of L
restricted to the constraint set satisfies g—gﬁ = Ag—; for
i=1,2 and some constant A

@ Because L is a monomial (hence homogeneous) and q is
homogeneous, if we take the usual Lagrange equations
and multiply by the first by 61 and the second by 6,, we get

138L = \(363 + 20305 + 6163)
162L = \(020, + 20165 + 363),
or (in vector format), writing p for gp(é\), where 0 is the MLE
for 0 = (01,06,)1,
L-b=L-Au=X-Ap (1)
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Maximum likelihood estimation and inference

Finding the MLE, cont.

@ Since (1,1,1,1) is in the real rowspace of A, we can
multiply both sides here by some vector to obtain
L-100 = \ (since Y uj=N=100and (1,1,1,1)p = 1).

@ Substituting back into (1), we obtain

Aﬁ:1b:<138 162>

100 100’ 100
@ Or explicitly
138
3 2 2
162
2 20, §2 3 _
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Maximum likelihood estimation and inference

Finding the MLE, cont.

@ These equations can be solved numerically, yielding a
unique real solution:

0; = .5992 and f, = .6597

@ The equation Ap = ﬂmb defines a polyhedron that meets

the model variety ©(R2 ;) in exactly the one point we found
approximately above.

@ The general proof for this uses the same setup and
reasoning as the proof of the properties of the (“algebraic”)
moment map for the corresponding toric variety (will
discuss this in a later talk)

John B. Little Toric Varieties in Algebraic Statistics



Maximum likelihood estimation and inference

MLE degree of a model

How many real or complex roots can there be for the ML
equations for a model? The abstract of [CHKS]: “Maximum
likelihood estimation in statistics leads to the problem of
maximizing a product of powers of polynomials. We study the
algebraic degree of the critical equations of this optimization
problem. This degree is related to the number of bounded
regions in the corresponding arrangement of hypersurfaces,
and to the Euler characteristic of the complexified complement.
Under suitable hypotheses, the maximum likelihood degree
equals the top Chern class of a sheaf of logarithmic differential
forms. Exact formulae in terms of degrees and Newton
polytopes are given for polynomials with generic coefficients.”
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Maximum likelihood estimation and inference

References for further study
CHKS Catanese, Hosten, Khetan, and Sturmfels The maximum
likelihood degree, Amer. J. Math. 128 (2006), 671-697
DSS Drton, Sturmfels, and Sullivant, Lectures on Algebraic
Statistics, Springer, 2008
CLS Cox, Little, and Schenck, Toric Varieties, AMS, 2011
PRW Pistone, Riccomagno, and Wynn, Algebraic Statistics:
Computational Commutative Algebra in Statistics,
Chapman and Hall, 2000
PS Pachter and Sturmfels, Algebraic Statistics for
Computational Biology, Cambridge U. Press, 2005
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