
Geometric modeling – basic examples
Toric surface patches

The (algebraic) moment map
Linear precision and connections with statistics

Toric Varieties in Geometric Modeling
Math in the Mountains Tutorial

John B. Little

Department of Mathematics and Computer Science
College of the Holy Cross

July 29-31, 2013

John B. Little Toric Varieties in Geometric Modeling



Geometric modeling – basic examples
Toric surface patches

The (algebraic) moment map
Linear precision and connections with statistics

Outline

1 Geometric modeling – basic examples

2 Toric surface patches

3 The (algebraic) moment map

4 Linear precision and connections with statistics

John B. Little Toric Varieties in Geometric Modeling



Geometric modeling – basic examples
Toric surface patches

The (algebraic) moment map
Linear precision and connections with statistics

Computer aided geometric design

Since the 1960’s Bézier curves and surfaces have been a
fundamental tool for designing, rendering, manufacturing
shapes
Work by Bézier (Renault) and de Casteljau (Citroën)
We will see how the study of toric varieties gives some
interesting tools for understanding this area and
developing new primitives, and
discuss some (perhaps unexpected) connections with
moment maps and Birch’s Theorem from the talk on
algebraic statistics
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Example 0 – cubic Bézier curves
Let P0, P1, P2, P3 be any four points in R2 (same
construction would also work in R3, or Rd more generally)
The associated Bézier cubic is the parametric curve
defined by

b(t) = (x(t), y(t)) =
3∑

i=0

(
3
i

)
t i(1− t)3−iPi

(Exercise: This is always a subset of a rational algebraic
curve of degree 3 in x , y .)
Note: the coefficients are the Bernstein basis for
polynomials of degree ≤ 3 and

3∑
i=0

(
3
i

)
t i(1− t)3−i = (t + (1− t))3 = 1
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Two Bézier curves

Figure: (0, 0), (1, 1), (0.1, 0), (0, 1)
Figure:
(0, 0), (1, 1), (1,−0.5), (0, 1)
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Bézier curves, cont.

Note the way the Pi (the control points) control the shape
b(0) = P0 and b(1) = P3

the relation on the Bernstein polynomials given above
implies that b(t) lies in conv{P0, P1, P2, P3} for all 0 ≤ t ≤ 1
Tangent vector at P0 is determined by P1 − P0; tangent
vector at P3 is determined by P3 − P2

More complicated shapes (e.g. character outlines in a
typeface) can be specified, or even designed, via Bézier
splines.
Can also replace cubic Bézier curves by degree n Bézier
curves with n + 1 control points (splines are generally
superior for applications, though!)
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Bézier surfaces

Can consider similar parametric surfaces
Two commonly-used types: Bézier triangles and
rectangles (“tensor products” of two Bézier curves)
For example, a Bézier triangle of order 3 would be given by
the selection of 10 control points Pij in R3:

b(x , y) =
∑

0≤i+j≤3

3!

i!j!(3− i − j)!
x iy j(1− x − y)3−i−jPij

on the domain ∆ = conv{(0, 0), (1, 0), (0, 1)}
Note: the edges will be cubic Bézier curves defined by the
4-tuples of control points {P00, P10, P20, P30},
{P00, P10, P20, P30}, and {P30, P21, P12, P03}
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A Bézier triangle

Figure: Corner control points are (0, 0, 0), (3, 3, 1), (1, 2, 4)
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A generalization

In [K], Krasauskas introduced a generalization of the
Bézier triangles and tensor product patches:
Construction starts from any convex lattice polygon ∆ in R2

Number the edges in some way with i = 1, . . . , r ; say vi is
an inward normal to the i th edge, and
hi(x , y) = 〈vi , (x , y)〉+ ai = 0 defines that line
The article [K] defines toric Bézier basis, or blending,
functions indexed by the lattice points m ∈ ∆ ∩ Z2:

Fm(x , y) = h1(x , y)h1(m) · · ·hr (x , y)hr (m)
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Toric patch parametrizations

Let wm > 0 be weights, and choose control points
P = {Pm ∈ R3 | m ∈ A}, both indexed by A = ∆ ∩ Z2. The
corresponding toric surface patch of shape A, w is the rational
parametric surface

bA,w ,P(x , y) =
1∑

m∈A wmFm(x , y)

∑
m∈A

wmFm(x , y)Pm

for (x , y) ∈ ∆. (We may sometimes omit the P in the notation.)
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Example – tensor product surfaces as toric patches

Use the normal vectors (0, 1), (−1, 0), (0,−1), (1, 0)
counterclockwise around ∆

Corresponding hi are h1(x , y) = y , h2(x , y) = p − x ,
h3(x , y) = q − y , h4(x , y) = x
We take wm =

(p
a

)(q
b

)
and

Fm(x , y) = xa(p − x)p−a · yb(q − y)q−b

A reparametrization of the usual tensor product Bézier
patch of bidegree (p, q) – standard form scales by letting
x = pξ and y = qη for (ξ, η) ∈ [0, 1]× [0, 1].
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Example – Bézier triangles as toric patches

Let ∆ = conv{(0, 0), (k , 0), (0, k)} and
Let A = ∆ ∩ Z2 be the set of all lattice points in ∆

Exercise: bA,w for ∆k = conv{(0, 0), (k , 0), (0, k)} is (a
reparametrization of) the Bézier triangle from before (with
proper choice of wm).
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General properties

Exercises: Just as in the simpler cases,
Image bA,w ,P(∆) lies in the convex hull of the set P,
Image contains the control points corresponding to vertices
of ∆

Control points for lattice points of ∆ on edges, but not at
vertices, determine shape of the boundaries; control points
for interior lattice points of ∆ can be used to introduce
concavity, ...
“Structural” singular points of the image (i.e. present for
generic control points) are determined by lattice geometry
of ∆ (singular cones in normal fan)
For more about all of this, see [K] and [CGS].
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But does the generality get you anything?

In the applications, triangles and rectangles can be slightly
awkward: for some surfaces, might need to subdivide a lot
Being able to construct 5- or 6-sided patches, for example,
might be useful for some things
Consider a toric surface patch from the hexagon

∆ = conv{(0, 0), (1, 0), (2, 1), (2, 2), (1, 2), (0, 1)}

for some particular control points in R3.
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The Fm for this A

F(0,0) = (y − x + 1)(2− x)2(2− y)2(x − y + 1)

F(1,0) = (2− x)(2− y)2(x − y + 1)2x

F(2,1) = x2y(2− y)(x − y + 1)2

F(2,2) = (y − x + 1)x2y2(x − y + 1)

F(1,2) = xy2(y − x + 1)2(2− x)

F(0,1) = y(y − x + 1)2(2− x)2(2− y)

F(0,0) = y(y − x + 1)(2− x)(2− y)(x − y + 1)x .

Also, let wm = 1 for all m
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Two views of a toric surface patch

Figure: Hexagonal toric patch
Figure: Rotated view –
m = (1, 1) ↔ Pm = (−3,−7, 5)
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Partial patches

We could also do the same replacing A by any subset A′ of the
lattice points in ∆ (usually want to include all of the vertices of
∆ so the polygon itself does not change)

Exercise: What is the relation between the corresponding toric
surface patches?
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A message from our sponsor ...

From what we have seen previously and these examples, it
should be relatively clear that the image of bA,w ,P is
somehow related to a toric variety. But, what is the precise
relation?
To simplify notation, let ` = |A|, take wm = 1 all m
First observation: Since hm come from the inward normals
to ∆, the map H : ∆ → R` given by the hm has image in
R`
≥0.

The toric blending functions come from composing this H
with χ : R` → R` defined by

y 7−→ (yh1(m)
1 · · · yh`(m)

` : m ∈ A)
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The “punch line”

So far, we have χ ◦ H : ∆ → R`
≥0 → R`

≥0. The toric surface
patch is the composition πP ◦ χ ◦ H, where πP : R` → R3 is
the affine form of a linear projection defined by the set of
control points
(Exercise) Since hi(x , y) = 〈vi , (x , y)〉+ ai , the
m-component of χ(y) is just yazm, where a = (a1, . . . , a`)
comes from the constant terms, and z = (zj) where

zj =
∏̀
i=1

y 〈vi ,ej 〉
i , j = 1, 2

But the map z 7→ (zm : m ∈ A) is just the monomial
parametrization of the toric variety YA.
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Factoring toric patches another way

Hence a toric surface patch can be factored a different way
as

∆ → (YA)≥0 → R3

The first map is χ ◦ H
The second is the projection πP defined by the control
points
also, (YA)≥0 is the is the set of points obtained from the
monomial parametrization of YA by taking all parameter
values real and ≥ 0.
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Relation with earlier examples

If A = conv{(0, 0), (k , 0), (0, k)} ∩ Z2, then (YA)≥0 is a
subset of the real points of the degree-k Veronese image
of P2

If A = ([0, p]× [0, q]) ∩ Z2, (YA)≥0 is a subset of the
Veronese-Segre bidegree (p, q) image of P1 × P1

The images of corresponding toric surface patches will be
projections of these defined by the control points
Krasauskas’ construction generalizes this to any
A ⊂ ∆ ∩ Z2, though, so it’s very flexible!
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But wait a minute, ...

Will it always be true that a toric surface patch preserves
the shape of ∆ to the degree we saw with the hexagon?
For instance, do k -sided polygons ∆ map to k -sided
bA,w (∆)? Of course, it also depends on the choice of the
control points, but there is an interesting connection
between this applied question and a general theoretical
statement about toric varieties (which in turn connects with
interesting questions in topology and symplectic geometry)
The connection depends on an algebraic version of the
moment map
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The moment map

Let A be a collection of lattice points with convex hull ∆ ⊂ R2.
The (algebraic) moment map of the toric surface YA is follows

f : YA −→ R2

x 7−→ 1∑
m∈A |xm|

∑
m∈A

|xm|m

(Recall, the entries of points in YA are in 1-1 correspondence
with the m ∈ A via the monomial parametrization.) The
symplectic moment map has |xm|2 instead of |xm|.
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The theorem

Theorem
The mapping f restricts to a homeomorphism between (YA)≥0
and the polygon ∆ = conv(A).

(See Theorem 12.2.2 in [CLS] or Chapter 4 of [F].)

The image of bA,w ,P is a linear projection of (YA)≥0. If the
edges of ∆ are primitive lattice segments (as for the hexagon
before), the boundaries are parts of straight lines too.
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Final observations

Looking back at the algebraic moment map definition:

f : YA −→ R2

x 7−→ 1∑
m∈A |xm|

∑
m∈A

|xm|m

note that f ◦ χ ◦ H restricted to ∆ is “almost” the same as
the toric patch – but using the m ∈ A “as the control points”
In some cases, we can see that f ◦ χ ◦ H is actually the
identity map on ∆
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An exercise:

Let ∆ the triangle ∆k = conv{(0, 0), (k , 0), (0, k)} and
A = ∆k ∩ Z2

Let w be the set of weights for the Bézier triangle toric surface
patch as before.

Then for the moment map f on the degree k Veronese image,
show that f ◦ χ ◦ H is the identity on ∆.
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Linear precision

The property f ◦ χ ◦ H = id∆ is related to a property called
linear precision in the geometric modeling world
Often used in a less restrictive sense there, though:
For some weights wm ≥ 0 and some choice of control
points m whose convex hull is ∆, the parametrized patch
(with control points the m) is the identity on ∆

If A is the set of vertices of ∆ and the blending functions of
a patch with linear precision are barycentric coordinates on
∆
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Final observations, continued

Can always reparametrize a toric surface patch by a
homeomorphism ∆ → ∆ to get linear precision
Can also vary weights wm and non-vertices of ∆ to “tune”
to obtain linear precision in some cases.
Interesting question: which A and sets of blending
functions on ∆ have this property “automatically?” The
article [BRS] shows that this true for Krasauskas’ toric
surface patches only for the ∆k triangles, the [p, 0]× [0, q]
rectangles, and certain trapezoids where X∆ is a rational
normal scroll (Hirzebruch surface)!
One can ask the analogous question in higher dimensions
too and which ∆ give linear precision is an open question
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Another characterization of linear precision

Proof in [BRS] is based on the following:
Given A, and the wm for m ∈ A, let fA,w =

∑
m∈A wmxm (a

Laurent polynomial)
Then the toric surface patch of shape A, w has linear
precision if and only if the rational mapping C2 → C2 given
by

1
f

(
x1

∂fA,w

∂x1
, x2

∂fA,w

∂x2

)
(toric polar mapping) is a birational isomorphism
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Relation to Birch’s theorem

In the talk on algebraic statistics, we considered toric models
associated to integer matrices A defined by expressions like

ϕ : θ 7→ 1∑m
j=1 θAj

(
θA1 , . . . , θAm

)
.

The toric model associated to A is ϕ(Rd
≥0) and this is (YA)≥0 as

above (abuse of notation: A for both the matrix and the set of
lattice points).

Given data u and b = Au, the MLE θ̂ gives p̂ ∈ ϕ(Rd
>0) and

Ap̂ = 1
N b. Almost the same as the case where the control

points are taken to be the m ∈ ∆ (morally, p̂ 7→ Ap̂ “is” the
moment map).
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