Toric Varieties in Geometric Modeling Math in the Mountains Tutorial

John B. Little

Department of Mathematics and Computer Science
College of the Holy Cross

July 29-31, 2013

Outline

(9) Geometric modeling - basic examples
(2) Toric surface patches
(3) The (algebraic) moment map

4 Linear precision and connections with statistics

Computer aided geometric design

- Since the 1960's Bézier curves and surfaces have been a fundamental tool for designing, rendering, manufacturing shapes
- Work by Bézier (Renault) and de Casteljau (Citroën)
- We will see how the study of toric varieties gives some interesting tools for understanding this area and developing new primitives, and
- discuss some (perhaps unexpected) connections with moment maps and Birch's Theorem from the talk on algebraic statistics

Example 0 - cubic Bézier curves

- Let $P_{0}, P_{1}, P_{2}, P_{3}$ be any four points in \mathbb{R}^{2} (same construction would also work in \mathbb{R}^{3}, or \mathbb{R}^{d} more generally)
- The associated Bézier cubic is the parametric curve defined by

$$
b(t)=(x(t), y(t))=\sum_{i=0}^{3}\binom{3}{i} t^{i}(1-t)^{3-i} P_{i}
$$

(Exercise: This is always a subset of a rational algebraic curve of degree 3 in x, y.)

- Note: the coefficients are the Bernstein basis for polynomials of degree ≤ 3 and

$$
\sum_{i=0}^{3}\binom{3}{i} t^{i}(1-t)^{3-i}=(t+(1-t))^{3}=1
$$

Two Bézier curves

Figure: $(0,0),(1,1),(0.1,0),(0,1)$

Figure: $(0,0),(1,1),(1,-0.5),(0,1)$

Bézier curves, cont.

- Note the way the P_{i} (the control points) control the shape
- $b(0)=P_{0}$ and $b(1)=P_{3}$
- the relation on the Bernstein polynomials given above implies that $b(t)$ lies in conv $\left\{P_{0}, P_{1}, P_{2}, P_{3}\right\}$ for all $0 \leq t \leq 1$
- Tangent vector at P_{0} is determined by $P_{1}-P_{0}$; tangent vector at P_{3} is determined by $P_{3}-P_{2}$
- More complicated shapes (e.g. character outlines in a typeface) can be specified, or even designed, via Bézier splines.
- Can also replace cubic Bézier curves by degree n Bézier curves with $n+1$ control points (splines are generally superior for applications, though!)

Bézier surfaces

- Can consider similar parametric surfaces
- Two commonly-used types: Bézier triangles and rectangles ("tensor products" of two Bézier curves)
- For example, a Bézier triangle of order 3 would be given by the selection of 10 control points $P_{i j}$ in \mathbb{R}^{3} :

$$
b(x, y)=\sum_{i=0}^{3} \sum_{j=0}^{3-i} \frac{3!}{i!j!(3-i-j)!} x^{i} y^{j}(1-x-y)^{3-i-j} P_{i j}
$$

on the domain $\Delta=\operatorname{conv}\{(0,0),(1,0),(0,1)\}$

- Note: the edges will be cubic Bézier curves defined by the 4-tuples of control points $\left\{P_{00}, P_{10}, P_{20}, P_{30}\right\}$, $\left\{P_{00}, P_{10}, P_{20}, P_{30}\right\}$, and $\left\{P_{30}, P_{21}, P_{12}, P_{03}\right\}$

A Bézier triangle

Figure: Corner control points are $(0,0,0),(3,3,1),(1,2,4)$

A generalization

- In [K], Krasauskas introduced a generalization of the Bézier triangles and tensor product patches:
- Construction starts from any convex lattice polygon Δ in \mathbb{R}^{2}
- Number the edges in some way with $i=1, \ldots, r$; say \mathbf{v}_{i} is an inward normal to the ith edge, and $h_{i}(x, y)=\left\langle\mathbf{v}_{i},(x, y)\right\rangle+a_{i}=0$ defines that line
- The article $[\mathrm{K}]$ defines toric Bézier basis, or blending, functions indexed by the lattice points $m \in \Delta \cap \mathbb{Z}^{2}$:

$$
F_{m}(x, y)=h_{1}(x, y)^{h_{1}(m)} \cdots h_{r}(x, y)^{h_{r}(m)}
$$

Toric patch parametrizations

Let $w_{m}>0$ be weights, and choose control points
$\mathcal{P}=\left\{P_{m} \in \mathbb{R}^{3} \mid m \in \mathcal{A}\right\}$, both indexed by $\mathcal{A}=\Delta \cap \mathbb{Z}^{2}$. The corresponding toric surface patch of shape \mathcal{A}, w is the rational parametric surface

$$
b_{\mathcal{A}, w, \mathcal{P}}(x, y)=\frac{1}{\sum_{m \in \mathcal{A}} w_{m} F_{m}(x, y)} \sum_{m \in \mathcal{A}} w_{m} F_{m}(x, y) P_{m}
$$

for $(x, y) \in \Delta$. (We may sometimes omit the \mathcal{P} in the notation.)

Example - tensor product surfaces as toric patches

- Use the normal vectors $(0,1),(-1,0),(0,-1),(1,0)$ counterclockwise around Δ
- Corresponding h_{i} are $h_{1}(x, y)=y, h_{2}(x, y)=p-x$, $h_{3}(x, y)=q-y, h_{4}(x, y)=x$
- We take $w_{m}=\binom{p}{a}\binom{q}{b}$ and

$$
F_{m}(x, y)=x^{a}(p-x)^{p-a} \cdot y^{b}(q-y)^{q-b}
$$

- A reparametrization of the usual tensor product Bézier patch of bidegree (p, q) - standard form scales by letting $x=p \xi$ and $y=q \eta$ for $(\xi, \eta) \in[0,1] \times[0,1]$.

Example - Bézier triangles as toric patches

- Let $\Delta=\operatorname{conv}\{(0,0),(k, 0),(0, k)\}$ and
- Let $\mathcal{A}=\Delta \cap \mathbb{Z}^{2}$ be the set of all lattice points in Δ
- Exercise: $b_{\mathcal{A}, w}$ for $\Delta_{k}=\operatorname{conv}\{(0,0),(k, 0),(0, k)\}$ is (a reparametrization of) the Bézier triangle from before (with proper choice of w_{m}).

General properties

- Exercises: Just as in the simpler cases,
- Image $b_{\mathcal{A}, w, \mathcal{P}}(\Delta)$ lies in the convex hull of the set \mathcal{P},
- Image contains the control points corresponding to vertices of Δ
- Control points for lattice points of Δ on edges, but not at vertices, determine shape of the boundaries; control points for interior lattice points of Δ can be used to introduce concavity, ...
- "Structural" singular points of the image (i.e. present for generic control points) are determined by lattice geometry of Δ (singular cones in normal fan)
- For more about all of this, see [CGS].

But does the generality get you anything?

- In the applications, triangles and rectangles can be slightly awkward: for some surfaces, might need to subdivide a lot
- Being able to construct 5 - or 6 -sided patches, for example, might be useful for some things
- Consider a toric surface patch from the hexagon

$$
\Delta=\operatorname{conv}\{(0,0),(1,0),(2,1),(2,2),(1,2),(0,1)\}
$$

for some particular control points in \mathbb{R}^{3}. The interior lattice point $(1,1)$ corresponds to a control point at $(-3,-7,5)$

The F_{m} for this \mathcal{A}

$$
\begin{aligned}
& F_{(0,0)}=(y-x+1)(2-x)^{2}(2-y)^{2}(x-y+1) \\
& F_{(1,0)}=(2-x)(2-y)^{2}(x-y+1)^{2} x \\
& F_{(2,1)}=x^{2} y(2-y)(x-y+1)^{2} \\
& F_{(2,2)}=(y-x+1) x^{2} y^{2}(x-y+1) \\
& F_{(1,2)}=x y^{2}(y-x+1)^{2}(2-x) \\
& F_{(0,1)}=y(y-x+1)^{2}(2-x)^{2}(2-y) \\
& F_{(0,0)}=y(y-x+1)(2-x)(2-y)(x-y+1) x .
\end{aligned}
$$

Also, let $w_{m}=1$ for all m

Two views of a toric surface patch

Figure: Hexagonal toric patch

Figure: Rotated view showing concavity

Partial patches

We could also do the same replacing \mathcal{A} by any subset \mathcal{A}^{\prime} of the lattice points in Δ (usually want to include all of the vertices so the polygon itself does not change)

Exercise: What is the relation between the corresponding toric surface patches?

A message from our sponsor

- From what we have seen previously and these examples, it should be relatively clear that the image of $b_{\mathcal{A}, w, \mathcal{P}}$ is somehow related to a toric variety. But, what is the precise relation?
- To simplify notation, let $\ell=|\mathcal{A}|$, take $w_{m}=1$ all m
- First observation: Since h_{m} come from the inward normals to Δ, the map $H: \Delta \rightarrow \mathbb{R}^{\ell}$ given by the h_{m} has image in $\mathbb{R}_{\geq 0}^{\ell}$.
- The toric blending functions come from composing this H with $\chi: \mathbb{R}^{\ell} \rightarrow \mathbb{R}^{\ell}$ defined by

$$
y \longmapsto\left(y_{1}^{h_{1}(m)} \cdots y_{\ell}^{h_{\ell}(m)}: m \in \mathcal{A}\right)
$$

The "punch line"

- So far, we have $\chi \circ H: \Delta \rightarrow \mathbb{R}_{\geq 0}^{\ell} \rightarrow \mathbb{R}_{\geq 0}^{\ell}$. The toric surface patch is the composition $\pi_{P} \circ \chi \circ H$, where $\pi_{p}: \mathbb{R}^{\ell} \rightarrow \mathbb{R}^{3}$ is the affine form of a linear projection defined by the set of control points
- (Exercise) Since $h_{i}(x, y)=\left\langle\mathbf{v}_{i},(x, y)\right\rangle+a_{i}$, the m-component of $\chi(y)$ is just $y^{a} z^{m}$, where $a=\left(a_{1}, \ldots, a_{\ell}\right)$ comes from the constant terms, and $z=\left(z_{j}\right)$ where

$$
z_{j}=\prod_{i=1}^{\ell} y_{i}^{\left\langle\mathbf{v}_{i}, \mathbf{e}_{j}\right\rangle}, \quad j=1,2
$$

- But the map $z \mapsto\left(z^{m}: m \in \mathcal{A}\right)$ is just the monomial parametrization of the toric variety $X_{\mathcal{A}}$.

Factoring toric patches another way

- Hence a toric surface patch can be factored a different way as

$$
\Delta \rightarrow\left(X_{\mathcal{A}}\right)_{\geq 0} \rightarrow \mathbb{R}^{3}
$$

- The first map is $\chi \circ H$
- The second is the projection π_{P} defined by the control points
- also, $\left(X_{\mathcal{A}}\right)_{\geq 0}$ is the is the set of points obtained from the monomial parametrization of $X_{\mathcal{A}}$ by taking all parameter values real and ≥ 0.

Relation with earlier examples

- If Δ_{k} is $\operatorname{conv}\{(0,0),(k, 0),(0, k)\}$ as above, then $\left(X_{\Delta_{k}}\right)_{\geq 0}$ is a subset of the real points of the degree- k Veronese image of \mathbb{P}^{2}
- $\left(X_{[p, 0] \times[0, q]}\right)_{\geq 0}$ is a subset of the Veronese-Segre bidegree p, q image of $\mathbb{P}^{1} \times \mathbb{P}^{1}$
- The images of corresponding toric surfaces patches will be projections of these defined by the control points
- Krasauskas' construction generalizes this to any Δ, though, so it's very flexible!

But wait a minute, ...

- Will it always be true that a toric surface patch preserves the shape of Δ to the degree we saw with the hexagon?
- For instance, do k-sided polygons Δ map to k-sided $b_{\mathcal{A}, w}(\Delta)$? Of course, it also depends on the choice of the control points, but there is an interesting connection between this applied question and a general theoretical statement about toric varieties (which in turn connects with interesting questions in topology and symplectic geometry)
- The connection depends on an algebraic version of the moment map

The moment map

Let \mathcal{A} be a set of lattice points with $\Delta=\operatorname{conv}(\mathcal{A})$. The (algebraic) moment map of the toric variety $X_{\mathcal{A}}$ is the mapping $X_{\mathcal{A}}$ defined as follows

$$
\begin{aligned}
f: X_{\mathcal{A}} & \longrightarrow \mathbb{R}^{2} \\
x & \longmapsto \frac{1}{\sum_{m \in \mathcal{A}}\left|x_{m}\right|} \sum_{m \in \mathcal{A}}\left|x_{m}\right| m
\end{aligned}
$$

Recall the entries of points in $X_{\mathcal{A}}$ are in 1-1 correspondence with the $m \in \mathcal{A}$ via the monomial parametrization. Also, the usual symplectic moment map is similar but with $\left|x_{m}\right|^{2}$ instead of $\left|x_{m}\right|$.

The theorem

Theorem

The mapping frestricts to a homeomorphism between the non-negative real part of $X_{\mathcal{A}}$ and the polygon Δ.
(See Theorem 12.2.2 in [CLS] or Chapter 4 of [F].)
As we said before, for any collection of control points, the image of the toric surface patch is a linear projection of the non-negative real part of $X_{\mathcal{A}}$.

Final observations

- Looking back at the algebraic moment map definition:

$$
\begin{aligned}
f: X_{\mathcal{A}} & \longrightarrow \mathbb{R}^{2} \\
x & \longmapsto \frac{1}{\sum_{m \in \mathcal{A}}\left|x_{m}\right|} \sum_{m \in \mathcal{A}}\left|x_{m}\right| m
\end{aligned}
$$

note that $f \circ \chi \circ H$ restricted to Δ is "almost" the same as the toric patch - but using the $m \in \mathcal{A}$ "as the control points"

- In some cases, we can see that $f \circ \chi \circ H$ is actually the identity map on Δ

An exercise:

Let Δ the triangle $\Delta_{k}=\operatorname{conv}\{(0,0),(k, 0),(0, k)\}$ and $\mathcal{A}=\Delta_{k} \cap \mathbb{Z}^{2}$

Let w be the set of weights for the Bézier triangle toric surface patch as before.

Then for the moment map f on the degree k Veronese image, show that $f \circ \chi \circ H$ is the identity on Δ.

Linear precision

- The property $f \circ \chi \circ H=\mathrm{id}_{\Delta}$ is related to a property called linear precision in the geometric modeling world
- Often used in a less restrictive sense there, though:
- For some weights $w_{m} \geq 0$ and some choice of control points m whose convex hull is Δ, the parametrized patch (with control points the m) is the identity on Δ
- If \mathcal{A} is the set of vertices of Δ and the blending functions of a patch with linear precision are barycentric coordinates on Δ

Final observations, continued

- Can always reparametrize a toric surface patch by a homeomorphism $\Delta \rightarrow \Delta$ to get linear precision
- Can also vary weights w_{m} and non-vertices of Δ to "tune" to obtain linear precision in some cases.
- Interesting question: which \mathcal{A} and sets of blending functions on Δ have this property "automatically?" The article [BRS] shows that this true for Krasauskas' toric surface patches only for the Δ_{k} triangles, the $[p, 0] \times[0, q]$ rectangles, and certain trapezoids where X_{Δ} is a rational normal scroll (Hirzebruch surface)!
- One can ask the analogous question in higher dimensions too and which Δ give linear precision is an open question

Another characterization of linear precision

- Proof in [BRS] is based on the following:
- Given \mathcal{A}, and the w_{m} for $m \in \mathcal{A}$, let $f_{\mathcal{A}, w}=\sum_{m \in \mathcal{A}} w_{m} x^{m}$ (a Laurent polynomial)
- Then the toric surface patch of shape \mathcal{A}, w has linear precision if and only if the rational mapping $\mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ given by

$$
\frac{1}{f}\left(x_{1} \frac{\partial f_{\mathcal{A}, w}}{\partial x_{1}}, x_{2} \frac{\partial f_{\mathcal{A}, w}}{\partial x_{2}}\right)
$$

(toric polar mapping) is a birational isomorphism

Relation to Birch's theorem

In the talk on algebraic statistics, considered toric models associated to integer matrices \mathcal{A} defined by expressions like

$$
\varphi: \theta \mapsto \frac{1}{\sum_{j=1}^{m} \theta^{\boldsymbol{A}_{j}}}\left(\theta^{A_{1}}, \ldots, \theta^{A_{m}}\right)
$$

The toric model associated to \mathcal{A} is $\varphi\left(\mathbb{R}_{>0}^{d}\right)$ and this is $\left(X_{\mathcal{A}}\right)_{\geq 0}$ as above (abuse of notation: \mathcal{A} for both the matrix and the set of lattice points; also might give a "partial" surface patch).

Given data u and $b=A u$, the MLE $\hat{\theta}$ gives $\hat{p} \in \varphi\left(\mathbb{R}_{>0}^{d}\right)$ and $A \widehat{p}=\frac{1}{N} b$. Almost the same as the case where the control points are taken to be the $m \in \Delta$ (morally, $\widehat{p} \mapsto A \widehat{p}$ "is" the moment map).

References for further study

BRS von Bothmer, Ranestad, and Sottile, Linear precision for toric surface patches, Found. of Comput. Math. 10 (2010), 37-66
K Krasauskas, Toric Surface Patches, Adv. Comput. Math. 17 (2002), 89-113
CGS Craciun, Garcia-Puente, and Sottile, Some geometrical aspects of control points for toric patches, Mathematical Methods for Curves and Surfaces (2010), 111-135 (arXiv 0812.1275)

CLS Cox, Little, and Schenck, Toric Varieties, AMS, 2011
F Fulton, Introduction to toric varieties, Princeton U. Press, 1993
GS Garcia-Puente and Sottile, Linear precision for parametric patches, Adv. Comput. Math. 33 (2010), 191-214.

