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A bit of history

Beginning of coding theory as a mathematical and
engineering subject came with a paper “A Mathematical
Theory of Communication” by Claude Shannon (1948).
Shannon lived from 1916 to 2001, and spent most of his
working career at Bell Labs and MIT.
He also made fundamental contributions to cryptography
and the design of computer circuitry in earlier work coming
from his Ph.D. thesis.
Other interests – inventing gadgets, juggling, unicycles,
chess(!)
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Shannon’s conceptual communication set-up

message noise

↓ ↓
encoder → trans. → channel → rec. → decoder

↓
message
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Examples

This is a very general framework, incorporating examples such
as

communication with deep space exploration craft (Mariner,
Voyager, etc. – the most important early application)
storing/retrieving information in computer memory
storing/retrieving audio information (CDs)
storing/rerieving video information (DVD and Blu-Ray
disks)
wireless communication

A main goal of coding theory is the design of coding schemes
that achieve error control : ability to detect and correct errors in
received messages.
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The case we will look at

We’ll consider “linear block codes” – vector subspaces C of
Fn

q for some n.
parameters: n, k = dimFq (C),

d = min
x 6=y∈C

d(x , y) = min
x 6=0∈C

weight(x)

(Hamming minimum distance/weight)
t = bd−1

2 c ⇒ all errors of weight ≤ t can be corrected by
“nearest neighbor decoding”
Good codes: k/n not too small (so not extremely
redundant), but at same time d or d/n not too small.
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Reed-Solomon codes
Pick a primitive element α for Fq (i.e. generator of the
cyclic multiplicative group of field), and write the nonzero
elements of Fq as 1, α, . . . , αq−2.

Let Lk = {f ∈ Fq[x ] : deg f < k}. Then

ev : Lk → F q−1
q

f 7→ (f (1), f (α), . . . , f (αq−2))

is linear and one-to-one if k < q. The image is called
RS(k , q).
All f of degree < k have at most k − 1 roots in Fq (and
some have exactly that many)

⇒ d = (q − 1)− (k − 1) = n − k + 1.

(Singleton bound: d ≤ n − k + 1.)
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An example

Using the standard monomial basis for Lk :

{1, x , x2, x3, . . . , xk−1}

The Reed-Solomon code RS(3, 16) (parameters:
n = 15, k = 3, d = 13 over F16, so 163 = 4096 distinct
codewords) has generator matrix:

G =

1 1 1 · · · 1 1 · · · 1
1 α α2 · · · α7 α8 · · · α14

1 α2 α4 · · · α14 α · · · α13


(means: the rows of G form a basis for C = RS(3, 16)).
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How Reed-Solomon codes are used

Reed-Solomon codes are among the most useful codes in
engineering practice in situations where errors tend to
occur in “bursts” rather than randomly.
E.g., RS(3, 16) has d = 13, corrects any error vector of
weight ≤ b13−1

2 c = 6 in a received word over F16
∼= F4

2.
A “burst” of up to 20 consecutive bit errors would affect at
most 6 of the symbols of the message thought of as
elements of F16. RS(3, 16) can correct any 20 or fewer
consecutive bit errors in a codeword.
Also have very efficient algebraic decoding algorithms
(Berlekamp-Massey, Euclidean (Sugiyama)).
Basis for the error-control coding used, for example, in CD
audio, deep-space exploration craft like Voyager , etc.
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Toric code basics

Introduced by J. Hansen ∼ 1997. Elementary description:

Let P be an integral convex polytope in Rm, m ≥ 1.
Points β in the finite set P ∩ Zm correspond to monomials
xβ (multi-index notation)
Let LP = Span{xβ : β ∈ P ∩ Zm}.
Then consider the toric evaluation map

ev : LP → F (q−1)m

q

f 7→ (f (γ) : γ ∈ (F ∗
q )m)

Image is the toric code CP(Fq).
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First example, and “generalized” toric codes

Example: The Reed-Solomon code RS(k , q) is obtained
with this construction by taking P = [0, k − 1] ⊂ R, since
P ∩ Z = {0, 1, . . . , k} and LP = Span{1, x , . . . , xk−1}.
Can also do the same construction for any S ⊆ P ∩ Zm

Get subcodes of CP(Fq) in this way; will denote them by
CS(Fq)

Also very natural to consider these more general codes for
several reasons (more on this later)
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Why are they interesting?

All CS(Fq) have properties parallel to RS codes, e.g. they
are “m-dimensional cyclic” codes (set of codewords is
closed under a large automorphism group).
Computer searches by L-, students, and most
systematically and recently, Brown and Kasprzyk [BK] have
showed that some very good m = 2 generalized toric
codes exist (better than any previously known codes in
standard databases).
(No argument about this, here, I hope!) Can apply lots of
nice algebraic geometry to study their properties (toric
varieties, intersection theory, line bundles, Riemann-Roch
theorems)
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Best known codes from this construction

an m = 2 generalized toric code over F8 with parameters
[49, 8, 34] – found by one group at MSRI-UP REU in 2009
different m = 3 generalized toric codes over F5 with
parameters [64, 8, 42] – another group at MSRI-UP REU in
2009 and Alex Simao, HC ’08
Seven new “champions” over F8 found by Brown and
Kasprzyk, reported in [BK], apparently motivated by the
following one L- found in 2011.
With hindsight, all can be described in other ways too; toric
construction gave a framework for finding them, though.
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A typical “current champion”

Over F8, take S given by filled circles (P = conv(S) shown):

sc c ss s s c cs s c c s ss c s c cs
Q

Q
Q�

�
�
A

A
����

Get a [49, 12, 28] code – best previously known for n = 49,
k = 12 over F8 was d = 27.
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How were these found?
Nicest way to say it – exhaustive ([BK]) and/or "heuristic"
(L-, etc.) search through space of possible S
Not very satisfying, though!
There are general theoretical lower and upper bounds on d
that apply to these codes (esp. work of D. Ruano, P.
Beelen) but
Not very easy to apply, and rarely sharp
Need some additional tools to make progress!
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A useful equivalence relation

Take S ⊂ [0, q − 2]m ' (Zq−1)
m, so corresponding monomials

are linearly independent as functions on (F ∗
q )m.

Theorem
If S′ = T (S) for some T = AGL(m, Zq−1), CS′(Fq) is
monomially equivalent to CS(Fq).

Monomial equivalence: There is an n × n permutation matrix Π
and an n × n invertible diagonal matrix Q such that G′ = GQΠ.
This implies d(CS) = d(CS′).
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Comments

Note: Even when we take S = P ∩ Zm for a polytope, S′ may
not be P ′ ∩ Zm for any P ′, so also need to study “generalized”
toric codes from arbitrary S to make use of this idea.

[BK] uses this in a crucial way – idea was enumerate the affine
equivalence classes of S contained in squares [0, `]× [0, `]

There are also cases where CS(Fq) and CS′(Fq) are
monomially equivalent, but S and S′ come from different affine
equivalence classes. The implication in the theorem only goes
the way stated.
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Small needles in huge haystacks!

For m = 3, q = 5, the generating function for number of
AGL(3, Z4)-orbits on k -sets in Z3

4:

1 + x + 2x2 + 4x3 + 16x4 + 37x5 + 147x6 +

498x7 + 2128x8 + 8790x9 + 39055x10 + 165885x11 +

678826x12 + 2584627x13 + · · ·

The “middle term” here is 333347580600x32(!)

“Most” of these subsets give quite uninteresting codes. But one
of the 2128 orbits of size k = 8 consists of codes with d = 42,
the “champion” mentioned before.
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From algebraic geometry

As we saw earlier, a lattice polytope P defines an abstract
toric variety XP .
Also get a line bundle L = LP specified by P, with basis of
sections given by monomials corresponding to the lattice
points in P.
Subsets of P ∩ Zm correspond to subspaces of H0(X ,L).
Codewords come by evaluation, and the issue is: how
many Fq-rational zeroes can a section have?
In case m = 2, main results of [LS1] show that for q
sufficiently large, d(CP(Fq)) can be bounded above and
below by looking at subpolytopes P ′ ⊆ P that decompose
as Minkowski sums.
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Intuition for proof

Minkowski-reducible subpolygons ↔ reducible sections
(Newton polygon of a product is Minkowski sum of Newton
polygons of factors).
Hasse-Weil upper and lower bounds for an irreducible
curve Y :

q + 1− 2pa(Y )
√

q ≤ |Y (Fq)| ≤ q + 1 + 2pa(Y )
√

q

Using this, some intersection theory, and Riemann-Roch
on the toric surface defined by P, [LS1] bounds number of
Fq-rational points on any reducible section of LP in
(F ∗

q )2 ⊂ XP

⇒ when q > (a crude but explicit lower bound), reducible
curves with more components must have more Fq-rational
points than those with fewer components.

John B. Little Toric Varieties in Coding Theory
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From lattice polytopes

Idea was tightened and extended in [SS1] – d for CP(Fq) is
connected with L(P) = full Minkowski length of P – the
maximum number of summands in a Minkowski sum
decomposition Q = Q1 + · · ·+ QL for Q ⊆ P.
In [SS1], Soprunov and Soprunova showed that in the
plane, every Minkowski-indecomposable polygon is lattice
equivalent to either
(a) the unit lattice segment conv{(0, 0), (1, 0)},
(b) the unit lattice simplex conv{(0, 0), (1, 0), (0, 1)}, or
(c) the “exceptional triangle” T0 = conv{(0, 0), (1, 2), (2, 1)}
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The Soprunov-Soprunova Theorem

Theorem (SS1)
If q is larger than an explicit (smaller than in [LS1]) lower bound
depending on L(P) and the area of P, then

d(CP(Fq)) ≥ (q − 1)2 − L(P)(q − 1)− b2
√

qc+ 1, (1)

and if no maximally decomposable Q ⊂ P contains an
exceptional triangle, then

d(CP(Fq)) ≥ (q − 1)2 − L(P)(q − 1). (2)
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An interesting polygon for q ≥ 5

u uu u uu u uu

�
�
�
�

�
���

�
�
@

@

P contains P ′ = conv{(1, 0), (2, 0), (1, 2), (2, 2)}
(= P1 + P2 + P3, Pi line segments) and
P ′′ = conv{(1, 0), (1, 1), (3, 2), (3, 3)} (similar).
No other decomposable Q ⊂ P with more than three
Minkowski summands
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Reducible curves

Bounds from [LS1] or [SS1] ⇒ for q suff. large

d(CP(Fq)) ≥ (q − 1)2 − 3(q − 1).

From P ′ above, obtain reducible sections of LP :
s = x(x − a)(y − b)(y − c), with 3(q − 1)− 2 zeroes in (F ∗

q )2 if
a, b, c ∈ F ∗

q , b 6= c. Hence,

d(CP(Fq)) ≤ (q − 1)2 − 3(q − 1) + 2.
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Minimum distances over different fields

Magma computations (package written by D. Joyner) show:

d(CP(F5)) = 6 vs. 42 − 3 · 4 + 2 = 6
d(CP(F7)) = 20 vs. 62 − 3 · 6 + 2 = 20
d(CP(F8)) = 28 vs. 72 − 3 · 7 + 2 = 30
d(CP(F9)) = 42 vs. 82 − 3 · 8 + 2 = 42

d(CP(F11)) = 72 vs. 102 − 3 · 10 + 2 = 72.
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More on q = 8

Where does a codeword with 49− 28 = 21 zero entries come
from? Magma: exactly 49 such words. One of them comes, for
instance, from the evaluation of

y + x3y3 + x2 ≡ y(1 + x3y2 + x2y6)

≡ y(1 + x3y2 + (x3y2)3)

Here congruences are mod 〈x7 − 1, y7 − 1〉, the ideal of the
F8-rational points of the 2-dimensional torus. So
1 + x3y2 + (x3y2)3 has exactly the same zeroes in (F ∗

8 )2 as
y + x3y3 + x2.

John B. Little Toric Varieties in Coding Theory
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Arithmetic of F8 matters!

1 + u + u3 is one of the two irreducible polynomials of degree 3
in F2[u], hence

F8
∼= F2[u]/〈1 + u + u3〉.

If β is a root of 1 + u + u3 = 0 in F8, then 1 + x3y2 + (x3y2)3 =

(x3y2 − β)(x3y2 − β2)(x3y2 − β4)

and there are exactly 3 · 7 = 21 points in (F ∗
8 )2 where this is

zero. Still a sort of reducibility that produces a section with the
largest number of zeroes here, even though the reducibility only
appears when we look modulo the ideal 〈x7 − 1, y7 − 1〉 (!).
Similar phenomena in many other cases for small q.
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Another Example: P = conv{(0, 0), (2, 0), (3, 1), (1, 4)}

s s ss s ss sss
�
J

J
JJ�

�
�
�

Have L(P) = 4, and P contains just one Minkowski sum of 4
indecomposable polygons, namely the line segment
Q = conv{(1, 0), (1, 4)}. Expect for q sufficiently large,

d(CP(Fq)) = (q − 1)2 − 4(q − 1).
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Leaving out lattice points

Now, study CS(Fq) for S contained in P from before:

s s ss c sc scs
�
J

J
JJ�

�
�
�

What happens? k = 7 only (not k = 10), and ...
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Example, continued

d(CS(F7)) = 18 vs. 62 − 4 · 6 = 12
d(CS(F8)) = 33 vs. 72 − 4 · 7 = 21
d(CS(F9)) = 32 = 82 − 4 · 8 = 32

d(CS(F11)) = 70 vs. 102 − 4 · 10 = 60
d(CS(F13)) = 96 = 122 − 4 · 12 = 96

d(CS(F16)) = 165 = 152 − 4 · 15 = 165
d(CS(F17)) = 192 = 162 − 4 · 16 = 192
d(CS(F19)) = 270 vs. 182 − 4 · 18 = 252

d(CS(Fq)) = (q − 1)2 − 4(q − 1) all q ≥ 23(?)
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The minimum weight words
CS(Fq) ⊂ CP(Fq), so d(CS(Fq)) ≥ d(CP(Fq)) and
Conjecture: d(CP(Fq)) = (q − 1)2 − 4(q − 1) for all q ≥ 23.
Evidence: SS Theorem implies ≥, but the CP code
contains the words ev(x(y4 + a3y3 + a2y2 + a1y + a0)) for
all ai ∈ Fq.
Some of those quartic polynomials factor
(y − β1) · · · (y − β4) for βj distinct ∈ F ∗

q , so 4(q − 1) zeroes
in (F ∗

q )2.
In Fq for q sufficiently large, there are also polynomials of
the form y4 + a1y + a0 that factor this way; bounds not
explicit enough to yield q ≥ 23, though!
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Two ways to think about this ...

First (the “glass is half-empty” point of view): leaving lattice
points out of P ∩ Zm is only likely to improve d dramatically
for toric codes when q is small
Second (the “glass is half-full” point of view): over larger
fields, for many sets of lattice points S with conv(S) = P,
can often include all of the lattice points in P ∩ Zm and get
toric codes of the same minimum distance and larger
dimension
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Taking toric codes “to the next dimension(s)”

This whole general area has only started to be explored
Intersection theory on higher-dimensional varieties is more
subtle and not so obvious how to apply it
Questions about polytopes and toric varieties in higher
dimensions are also more subtle (e.g. classification of
Minkowski-irreducible polytopes)
Some preliminary work in [LS2] and [SS2]
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A different approach

Square submatrices of the generator matrix G for a
Reed-Solomon code are usual (one-variable) Vandermonde
matrices:

V =


1 1 · · · 1
αj1 αj2 · · · αjk

...
...

. . .
...

(αj1)k−1 (αj2)k−1 · · · (αjk )k−1


(Well-known and standard observation for studying these codes
– implies the rows of G are linearly independent, for instance.)
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General Vandermondes

Let P be an integral convex polytope, and write
P ∩ Zm = {e(i) : 1 ≤ i ≤ `}, ` = |P ∩ Zm|.
Let S = {pj : 1 ≤ j ≤ `} be any set of ` points in (F ∗

q )m.
Picking orderings, define V (P; S), the Vandermonde
matrix associated to P and S, to be the `× ` matrix

V (P; S) =
(

pe(i)
j

)
,

where pe(i)
j is the value of the monomial xe(i) at the point

pj .
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Other uses

Interestingly enough, the multivariate Vandermonde matrices
have also made appearances in the study of

multivariate polynomial interpolation
polynomial equation solving
Gröbner basis theory
multipolynomial resultants
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An Example

Let P = conv{(0, 0), (2, 0), (0, 2)} in R2, and S = {(xj , yj)} be
any set of 6 points in (F ∗

q )2. For one particular choice of
ordering of the lattice points in P, we have V (P; S) =

1 1 1 1 1 1
x1 x2 x3 x4 x5 x6
y1 y2 y3 y4 y5 y6
x2

1 x2
2 x2

3 x2
4 x2

5 x2
6

x1y1 x2y2 x3y3 x4y4 x5y5 x6y6
y2

1 y2
2 y2

3 y2
4 y2

5 y2
6
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Minimum Distance Theorem, [LS2]

Theorem
Let P ⊂ Rm be an integral convex polytope. Let d be a positive
integer and assume that in every set T ⊂ (F ∗

q )m with
|T | = (q − 1)m − (d − 1) there exists some S ⊂ T with |S| = `
such that det V (P; S) 6= 0. Then the minimum distance satisfies
d(CP) ≥ d.

Proof: For all S, det V (P; S) 6= 0 ⇒ the homogeneous linear
system obtained from the generator matrix, in columns
corresponding to S, has only the trivial solution so there are no
nonzero codewords with (q − 1)m − (d − 1) zero entries. Hence
every nonzero codeword has ≥ d nonzero entries.
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Codes from simplices

Consider CP`(m) for P`(m) an m-dimensional simplex of the
form

P`(m) = conv{0, `e1, . . . , `em},

where the ei are the standard basis vectors in Rm.
(Corresponding toric variety is the degree ` Veronese
embedding of Pm. The corresponding Vandermonde matrices
also arise in the study of multivariate interpolation using
polynomials of bounded total degree.)

Need to identify S for which det(V (P`(m); S)) 6= 0.
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Definition
If m = 1, an `th order simplicial configuration is any collection
of

(1+`
`

)
distinct points in F ∗

q . For m ≥ 2, we will say that a
collection S of

(m+`
`

)
points in (F ∗

q )m is an m-dimensional `th
order simplicial configuration if the following conditions hold:

1 For some i, 1 ≤ i ≤ m, there are hyperplanes
xi = a1, xi = a2, . . . , xi = a`+1 such that for each
1 ≤ j ≤ ` + 1, S contains exactly

(m−1+j−1
j−1

)
points with

xi = aj .
2 For each j, 1 ≤ j ≤ ` + 1, the points in xi = aj form an

(m − 1)-dimensional simplicial configuration of order j − 1.
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A “simplicial configuration” in (F ∗
8 )2 – “log plot”.

-

6

t
t

t

t
t

t

John B. Little Toric Varieties in Coding Theory



Coding theory basics
Toric codes

Tools from the toric world
Higher-dimensional polytopes and Vandermonde matrices

Some observations

Let S be an m-dimensional `th order simplicial
configuration consisting of

(m+`
`

)
points, in hyperplanes

xm = a1, . . . , xm = a`+1.
Write S = S′ ∪ S′′ where S′ is the union of the points in
xi = a1, . . . , a`, and S′′ is the set of points in xi = a`+1.
Let π : F m

q → F m−1
q be the projection on the first m − 1

coordinates.
Both S′ and π(S′′) are themselves simplicial
configurations: S′ dimension m and order `− 1; π(S′′)
dimension m − 1 and order `.
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A recurrence [LS2]

Theorem
Let P`(m) be as above and let S be an `th order simplicial
configuration of

(m+`
`

)
points. Then writing p = (p1, . . . , pm) for

points p ∈ (F ∗
q )m,

det V (P`(m); S) = ±
∏

p∈S′

(pm − a`+1)

·det V (P`−1(m); S′)

·det V (P`(m − 1);π(S′′))

(Suggested by a computation in a paper on multivariate
interpolation by Chui and Lai – “poised sets” for interpolation by
polynomials of degree bounded bounded by `.)
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Consequences

Corollary

Let P`(m) be as above and let S be an `th order simplicial
configuration of

(m+`
`

)
points. Then det V (P`(m); S) 6= 0.

Theorem
Let ` < q − 1, and let P`(m) be the simplex in Rm defined
above. Then the minimum distance of the toric code CP`(m) is
given by

d(CP`(m)) = (q − 1)m − `(q − 1)m−1.
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The idea of the proof

The result on Vandermondes is used to show
d(CP`(m)) ≥ (q − 1)m − `(q − 1)m−1.

A pigeon-hole principle argument constructs simplicial
configurations S ⊂ T for every T with |T | = `(q − 1)m + 1.

Other inequality comes from reducibles (xm − a1) . . . (xm − a`).
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Summary

Toric codes are interesting and accessible (even for
undergraduate projects!)
But the results on toric codes from simplices and
parallelotopes show that d is often quite small relative to k .
It is an interesting problem to determine criteria for
polytopes (or subsets of the lattice points in a polytope)
that yield good evaluation codes.
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