Toric Varieties in Error-Control Coding Theory
Math in the Mountains Tutorial

John B. Little

Department of Mathematics and Computer Science
College of the Holy Cross

July 29-31, 2013
A bit of history

- Beginning of coding theory as a mathematical and engineering subject came with a paper “A Mathematical Theory of Communication” by Claude Shannon (1948).
- Shannon lived from 1916 to 2001, and spent most of his working career at Bell Labs and MIT.
- He also made fundamental contributions to cryptography and the design of computer circuitry in earlier work coming from his Ph.D. thesis.
- Other interests – inventing gadgets, juggling, unicycles, chess(!)
Shannon’s conceptual communication set-up

message ↓
encoder → trans. → channel → rec. → decoder ↓
message

noise ↓
Examples

This is a very general framework, incorporating examples such as

- communication with deep space exploration craft (Mariner, Voyager, etc. – the most important early application)
- storing/retrieving information in computer memory
- storing/retrieving audio information (CDs)
- storing/retrieving video information (DVD and Blu-Ray disks)
- wireless communication

A main goal of coding theory is the design of coding schemes that achieve error control: ability to detect and correct errors in received messages.
The case we will look at

- We’ll consider “linear block codes” – vector subspaces C of \mathbb{F}_q^n for some n.
- parameters: n, $k = \dim_{\mathbb{F}_q}(C)$,

$$d = \min_{x \neq y \in C} d(x, y) = \min_{x \neq 0 \in C} \text{weight}(x)$$

($\text{Hamming minimum distance/weight}$)

- $t = \left\lfloor \frac{d-1}{2} \right\rfloor \Rightarrow$ all errors of weight $\leq t$ can be corrected by “nearest neighbor decoding”
- Good codes: k/n not too small (so not extremely redundant), but at same time d or d/n not too small.
Reed-Solomon codes

- Pick a primitive element α for \mathbb{F}_q (i.e. generator of the cyclic multiplicative group of field), and write the nonzero elements of \mathbb{F}_q as $1, \alpha, \ldots, \alpha^{q-2}$.
- Let $L_k = \{ f \in \mathbb{F}_q[x] : \deg f < k \}$. Then

$$\text{ev} : L_k \rightarrow \mathbb{F}_q^{q-1}$$

$$f \mapsto (f(1), f(\alpha), \ldots, f(\alpha^{q-2}))$$

is linear and one-to-one if $k < q$. The image is called $RS(k, q)$.
- All f of degree $< k$ have at most $k - 1$ roots in \mathbb{F}_q (and some have exactly that many)

$$\Rightarrow d = (q - 1) - (k - 1) = n - k + 1.$$

(Singleton bound: $d \leq n - k + 1.$)
An example

Using the standard monomial basis for L_k:

$$\{1, x, x^2, x^3, \ldots, x^{k-1}\}$$

The Reed-Solomon code $RS(3, 16)$ (parameters: $n = 15, k = 3, d = 13$ over \mathbb{F}_{16}, so $16^3 = 4096$ distinct codewords) has generator matrix:

$$G = \begin{pmatrix}
1 & 1 & 1 & \cdots & 1 & 1 & \cdots & 1 \\
1 & \alpha & \alpha^2 & \cdots & \alpha^7 & \alpha^8 & \cdots & \alpha^{14} \\
1 & \alpha^2 & \alpha^4 & \cdots & \alpha^{14} & \alpha & \cdots & \alpha^{13}
\end{pmatrix}$$

(means: the rows of G form a basis for $C = RS(3, 16)$).
How Reed-Solomon codes are used

- Reed-Solomon codes are among the most useful codes in engineering practice in situations where errors tend to occur in “bursts” rather than randomly.

- E.g., $RS(3, 16)$ has $d = 13$, corrects any error vector of weight $\leq \left\lfloor \frac{13-1}{2} \right\rfloor = 6$ in a received word over $\mathbb{F}_{16} \cong \mathbb{F}_4^2$.

- A “burst” of up to 20 consecutive bit errors would affect at most 6 of the symbols of the message thought of as elements of \mathbb{F}_{16}. $RS(3, 16)$ can correct any 20 or fewer consecutive bit errors in a codeword.

- Also have very efficient algebraic decoding algorithms (Berlekamp-Massey, Euclidean (Sugiyama)).

- Basis for the error-control coding used, for example, in CD audio, deep-space exploration craft like Voyager, etc.
Toric code basics

Introduced by J. Hansen \(\sim\) 1997. Elementary description:

- Let \(P\) be an integral convex polytope in \(\mathbb{R}^m, m \geq 1\).
- Points \(\beta\) in the finite set \(P \cap \mathbb{Z}^m\) correspond to monomials \(x^\beta\) (multi-index notation).
- Let \(L_P = \text{Span}\{x^\beta : \beta \in P \cap \mathbb{Z}^m\}\).
- Then consider the \textit{toric evaluation map}

\[
ev : L_P \rightarrow \mathbb{F}_q^{(q-1)^m}
\]

\[
f \mapsto (f(\gamma) : \gamma \in (\mathbb{F}_q^*)^m)
\]

Image is the toric code \(C_P(\mathbb{F}_q)\).
First example, and “generalized” toric codes

- Example: The Reed-Solomon code $RS(k, q)$ is obtained with this construction by taking $P = [0, k - 1] \subset \mathbb{R}$, since $P \cap \mathbb{Z} = \{0, 1, \ldots, k\}$ and $L_{P} = \text{Span}\{1, x, \ldots, x^{k-1}\}$.

- Can also do the same construction for any $S \subseteq P \cap \mathbb{Z}^{m}$

- Get subcodes of $C_{P}(\mathbb{F}_{q})$ in this way; will denote them by $C_{S}(\mathbb{F}_{q})$

- Also very natural to consider these more general codes for several reasons (more on this later)
Why are they interesting?

- All $C_S(\mathbb{F}_q)$ have properties parallel to RS codes, e.g. they are “m-dimensional cyclic” codes (set of codewords is closed under a large automorphism group).

- Computer searches by L-, students, and most systematically and recently, Brown and Kasprzyk [BK] have showed that some very good $m = 2$ generalized toric codes exist (better than any previously known codes in standard databases).

- (No argument about this, here, I hope!) Can apply lots of nice algebraic geometry to study their properties (toric varieties, intersection theory, line bundles, Riemann-Roch theorems)
Best known codes from this construction

- an $m = 2$ generalized toric code over \mathbb{F}_8 with parameters $[49, 8, 34]$ – found by one group at MSRI-UP REU in 2009
- different $m = 3$ generalized toric codes over \mathbb{F}_5 with parameters $[64, 8, 42]$ – another group at MSRI-UP REU in 2009 and Alex Simao, HC ’08
- Seven new “champions” over \mathbb{F}_8 found by Brown and Kasprzyk, reported in [BK], apparently motivated by the following one L- found in 2011.
- With hindsight, all can be described in other ways too; toric construction gave a framework for finding them, though.
A typical “current champion”

Over \mathbb{F}_8, take S given by filled circles ($P = \text{conv}(S)$ shown):

Get a [49, 12, 28] code – best previously known for $n = 49$, $k = 12$ over \mathbb{F}_8 was $d = 27$.
How were these found?

- Nicest way to say it – exhaustive ([BK]) and/or "heuristic" (L-, etc.) search through space of possible S
- Not very satisfying, though!
- There are general theoretical lower and upper bounds on d that apply to these codes (esp. work of D. Ruano, P. Beelen) but
- Not very easy to apply, and rarely sharp
- Need some additional tools to make progress!
A useful equivalence relation

Take $S \subset [0, q - 2]^m \cong (\mathbb{Z}_{q-1})^m$, so corresponding monomials are linearly independent as functions on $(\mathbb{F}_q^*)^m$.

Theorem

If $S' = T(S)$ *for some* $T = \text{AGL}(m, \mathbb{Z}_{q-1})$, $C_{S'}(\mathbb{F}_q)$ *is monomially equivalent to* $C_S(\mathbb{F}_q)$.

Monomial equivalence: There is an $n \times n$ permutation matrix Π and an $n \times n$ invertible diagonal matrix Q such that $G' = GQ\Pi$. This implies $d(C_S) = d(C_{S'})$.
Comments

Note: Even when we take $S = P \cap \mathbb{Z}^m$ for a polytope, S' may not be $P' \cap \mathbb{Z}^m$ for any P', so also need to study “generalized” toric codes from arbitrary S to make use of this idea.

[BK] uses this in a crucial way – idea was enumerate the affine equivalence classes of S contained in squares $[0, \ell] \times [0, \ell]$

There are also cases where $C_S(\mathbb{F}_q)$ and $C_{S'}(\mathbb{F}_q)$ are monomially equivalent, but S and S' come from different affine equivalence classes. The implication in the theorem only goes the way stated.
Small needles in huge haystacks!

For $m = 3$, $q = 5$, the generating function for number of AGL$(3, \mathbb{Z}_4)$-orbits on k-sets in \mathbb{Z}_4^3:

$$1 + x + 2x^2 + 4x^3 + 16x^4 + 37x^5 + 147x^6 + 498x^7 + 2128x^8 + 8790x^9 + 39055x^{10} + 165885x^{11} + 678826x^{12} + 2584627x^{13} + \cdots$$

The “middle term” here is $333347580600x^{32}$(!)

“Most” of these subsets give quite uninteresting codes. But one of the 2128 orbits of size $k = 8$ consists of codes with $d = 42$, the “champion” mentioned before.
From algebraic geometry

- As we saw earlier, a lattice polytope P defines an abstract toric variety X_P.
- Also get a line bundle $\mathcal{L} = \mathcal{L}_P$ specified by P, with basis of sections given by monomials corresponding to the lattice points in P.
- Subsets of $P \cap \mathbb{Z}^m$ correspond to subspaces of $H^0(X, \mathcal{L})$.
- Codewords come by evaluation, and the issue is: how many \mathbb{F}_q-rational zeroes can a section have?
- In case $m = 2$, main results of [LS1] show that for q sufficiently large, $d(C_P(\mathbb{F}_q))$ can be bounded above and below by looking at subpolytopes $P' \subseteq P$ that decompose as Minkowski sums.
Intuition for proof

- Minkowski-reducible subpolygons \leftrightarrow reducible sections (Newton polygon of a product is Minkowski sum of Newton polygons of factors).
- Hasse-Weil upper and lower bounds for an irreducible curve Y:

$$q + 1 - 2p_a(Y)\sqrt{q} \leq |Y(\mathbb{F}_q)| \leq q + 1 + 2p_a(Y)\sqrt{q}$$

- Using this, some intersection theory, and Riemann-Roch on the toric surface defined by P, [LS1] bounds number of \mathbb{F}_q-rational points on any reducible section of \mathcal{L}_P in $(\mathbb{F}_q^*)^2 \subset X_P$
- \Rightarrow when $q >$ (a crude but explicit lower bound), reducible curves with more components must have more \mathbb{F}_q-rational points than those with fewer components.
From lattice polytopes

- Idea was tightened and extended in [SS1] – d for $C_P(\mathbb{F}_q)$ is connected with $L(P) = \text{full Minkowski length}$ of P – the maximum number of summands in a Minkowski sum decomposition $Q = Q_1 + \cdots + Q_L$ for $Q \subseteq P$.

- In [SS1], Soprunov and Soprunova showed that in the plane, every Minkowski-indecomposable polygon is lattice equivalent to either
 (a) the unit lattice segment $\text{conv}\{(0, 0), (1, 0)\}$,
 (b) the unit lattice simplex $\text{conv}\{(0, 0), (1, 0), (0, 1)\}$, or
 (c) the “exceptional triangle” $T_0 = \text{conv}\{(0, 0), (1, 2), (2, 1)\}$
The Soprunov-Soprunova Theorem

Theorem (SS1)

If \(q \) is larger than an explicit (smaller than in [LS1]) lower bound depending on \(L(P) \) and the area of \(P \), then

\[
d(C_P(F_q)) \geq (q - 1)^2 - L(P)(q - 1) - \lfloor 2\sqrt{q} \rfloor + 1, \tag{1}
\]

and if no maximally decomposable \(Q \subset P \) contains an exceptional triangle, then

\[
d(C_P(F_q)) \geq (q - 1)^2 - L(P)(q - 1). \tag{2}
\]
An interesting polygon for $q \geq 5$

- P contains $P' = \text{conv}\{(1,0), (2,0), (1,2), (2,2)\}$
 $(= P_1 + P_2 + P_3, P_i$ line segments$)$ and
 $P'' = \text{conv}\{(1,0), (1,1), (3,2), (3,3)\}$ (similar).

- No other decomposable $Q \subset P$ with more than three Minkowski summands
Reducible curves

Bounds from [LS1] or [SS1] ⇒ for q suff. large

\[d(\mathcal{C}_P(\mathbb{F}_q)) \geq (q - 1)^2 - 3(q - 1). \]

From \(P' \) above, obtain reducible sections of \(L_P \):
s \(= x(x - a)(y - b)(y - c) \), with \(3(q - 1) - 2 \) zeroes in \((\mathbb{F}_q^*)^2 \) if
a, b, c \(\in \mathbb{F}_q^* \), b \(\neq c \). Hence,

\[d(\mathcal{C}_P(\mathbb{F}_q)) \leq (q - 1)^2 - 3(q - 1) + 2. \]
Minimum distances over different fields

Magma computations (package written by D. Joyner) show:

\[
\begin{align*}
\textstyle d(C_P(\mathbb{F}_5)) &= 6 & \text{vs.} & \ 4^2 - 3 \cdot 4 + 2 = 6 \\
\textstyle d(C_P(\mathbb{F}_7)) &= 20 & \text{vs.} & \ 6^2 - 3 \cdot 6 + 2 = 20 \\
\textstyle d(C_P(\mathbb{F}_8)) &= 28 & \text{vs.} & \ 7^2 - 3 \cdot 7 + 2 = 30 \\
\textstyle d(C_P(\mathbb{F}_9)) &= 42 & \text{vs.} & \ 8^2 - 3 \cdot 8 + 2 = 42 \\
\textstyle d(C_P(\mathbb{F}_{11})) &= 72 & \text{vs.} & \ 10^2 - 3 \cdot 10 + 2 = 72.
\end{align*}
\]
More on $q = 8$

Where does a codeword with $49 - 28 = 21$ zero entries come from? Magma: exactly 49 such words. One of them comes, for instance, from the evaluation of

$$y + x^3 y^3 + x^2 \equiv y(1 + x^3 y^2 + x^2 y^6)$$

$$\equiv y(1 + x^3 y^2 + (x^3 y^2)^3)$$

Here congruences are mod $\langle x^7 - 1, y^7 - 1 \rangle$, the ideal of the \mathbb{F}_8-rational points of the 2-dimensional torus. So $1 + x^3 y^2 + (x^3 y^2)^3$ has exactly the same zeroes in $(\mathbb{F}_8^*)^2$ as $y + x^3 y^3 + x^2$.
Arithmetic of \mathbb{F}_8 matters!

$1 + u + u^3$ is one of the two irreducible polynomials of degree 3 in $\mathbb{F}_2[u]$, hence

$$\mathbb{F}_8 \cong \mathbb{F}_2[u]/\langle 1 + u + u^3 \rangle.$$

If β is a root of $1 + u + u^3 = 0$ in \mathbb{F}_8, then $1 + x^3y^2 + (x^3y^2)^3 = (x^3y^2 - \beta)(x^3y^2 - \beta^2)(x^3y^2 - \beta^4)$

and there are exactly $3 \cdot 7 = 21$ points in $(\mathbb{F}_8^*)^2$ where this is zero. Still a sort of reducibility that produces a section with the largest number of zeroes here, even though the reducibility only appears when we look modulo the ideal $\langle x^7 - 1, y^7 - 1 \rangle$ (!). Similar phenomena in many other cases for small q.
Another Example: \(P = \text{conv}\{(0, 0), (2, 0), (3, 1), (1, 4)\} \)

Have \(L(P) = 4 \), and \(P \) contains just one Minkowski sum of 4 indecomposable polygons, namely the line segment \(Q = \text{conv}\{(1, 0), (1, 4)\} \). Expect for \(q \) sufficiently large,

\[
d(C_P(\mathbb{F}_q)) = (q - 1)^2 - 4(q - 1).
\]
Leaving out lattice points

Now, study $C_S(\mathbb{F}_q)$ for S contained in P from before:

What happens? $k = 7$ only (not $k = 10$), and ...
Example, continued

\[d(C_S(\mathbb{F}_7)) = 18 \quad \text{vs.} \quad 6^2 - 4 \cdot 6 = 12 \]
\[d(C_S(\mathbb{F}_8)) = 33 \quad \text{vs.} \quad 7^2 - 4 \cdot 7 = 21 \]
\[d(C_S(\mathbb{F}_9)) = 32 \quad = \quad 8^2 - 4 \cdot 8 = 32 \]
\[d(C_S(\mathbb{F}_{11})) = 70 \quad \text{vs.} \quad 10^2 - 4 \cdot 10 = 60 \]
\[d(C_S(\mathbb{F}_{13})) = 96 \quad = \quad 12^2 - 4 \cdot 12 = 96 \]
\[d(C_S(\mathbb{F}_{16})) = 165 \quad = \quad 15^2 - 4 \cdot 15 = 165 \]
\[d(C_S(\mathbb{F}_{17})) = 192 \quad = \quad 16^2 - 4 \cdot 16 = 192 \]
\[d(C_S(\mathbb{F}_{19})) = 270 \quad \text{vs.} \quad 18^2 - 4 \cdot 18 = 252 \]
\[d(C_S(\mathbb{F}_q)) \quad = \quad (q - 1)^2 - 4(q - 1) \quad \text{all } q \geq 23(?) \]
The minimum weight words

- $C_S(\mathbb{F}_q) \subset C_P(\mathbb{F}_q)$, so $d(C_S(\mathbb{F}_q)) \geq d(C_P(\mathbb{F}_q))$ and
- Conjecture: $d(C_P(\mathbb{F}_q)) = (q - 1)^2 - 4(q - 1)$ for all $q \geq 23$.
 Evidence: SS Theorem implies \geq, but the C_P code contains the words $ev(x(y^4 + a_3y^3 + a_2y^2 + a_1y + a_0))$ for all $a_i \in \mathbb{F}_q$.

- Some of those quartic polynomials factor $(y - \beta_1) \cdots (y - \beta_4)$ for β_j distinct $\in \mathbb{F}_q^*$, so $4(q - 1)$ zeroes in $(\mathbb{F}_q^*)^2$.
- In \mathbb{F}_q for q sufficiently large, there are also polynomials of the form $y^4 + a_1y + a_0$ that factor this way; bounds not explicit enough to yield $q \geq 23$, though!
Two ways to think about this ...

First (the “glass is half-empty” point of view): leaving lattice points out of \(P \cap \mathbb{Z}^m \) is only likely to improve \(d \) dramatically for toric codes when \(q \) is small.

Second (the “glass is half-full” point of view): over larger fields, for many sets of lattice points \(S \) with \(\text{conv}(S) = P \), can often include all of the lattice points in \(P \cap \mathbb{Z}^m \) and get toric codes of the same minimum distance and larger dimension.
Taking toric codes “to the next dimension(s)"

- This whole general area has only started to be explored
- Intersection theory on higher-dimensional varieties is more subtle and not so obvious how to apply it
- Questions about polytopes and toric varieties in higher dimensions are also more subtle (e.g. classification of Minkowski-irreducible polytopes)
- Some preliminary work in [LS2] and [SS2]
A different approach

Square submatrices of the generator matrix G for a Reed-Solomon code are usual (one-variable) Vandermonde matrices:

$$V = \begin{pmatrix}
1 & 1 & \cdots & 1 \\
\alpha^{j_1} & \alpha^{j_2} & \cdots & \alpha^{j_k} \\
\vdots & \vdots & \ddots & \vdots \\
(\alpha^{j_1})^{k-1} & (\alpha^{j_2})^{k-1} & \cdots & (\alpha^{j_k})^{k-1}
\end{pmatrix}
$$

(Well-known and standard observation for studying these codes – implies the rows of G are linearly independent, for instance.)
General Vandermondes

Let P be an integral convex polytope, and write
\[P \cap \mathbb{Z}^m = \{ e(i) : 1 \leq i \leq \ell \}, \quad \ell = |P \cap \mathbb{Z}^m|. \]

Let $S = \{ p_j : 1 \leq j \leq \ell \}$ be any set of ℓ points in $(\mathbb{F}_q)^m$.

Picking orderings, define $V(P; S)$, the Vandermonde matrix associated to P and S, to be the $\ell \times \ell$ matrix

\[V(P; S) = \begin{pmatrix} p_j^{e(i)} \end{pmatrix}, \]

where $p_j^{e(i)}$ is the value of the monomial $x^{e(i)}$ at the point p_j.
Other uses

Interestingly enough, the multivariate Vandermonde matrices have also made appearances in the study of

- multivariate polynomial interpolation
- polynomial equation solving
- Gröbner basis theory
- multipolynomial resultants
An Example

Let $P = \text{conv}\{(0, 0), (2, 0), (0, 2)\}$ in \mathbb{R}^2, and $S = \{(x_j, y_j)\}$ be any set of 6 points in $(\mathbb{F}_q^*)^2$. For one particular choice of ordering of the lattice points in P, we have $V(P; S) =$

$$
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
y_1 & y_2 & y_3 & y_4 & y_5 & y_6 \\
x_1^2 & x_2^2 & x_3^2 & x_4^2 & x_5^2 & x_6^2 \\
x_1 y_1 & x_2 y_2 & x_3 y_3 & x_4 y_4 & x_5 y_5 & x_6 y_6 \\
y_1^2 & y_2^2 & y_3^2 & y_4^2 & y_5^2 & y_6^2
\end{pmatrix}
$$
Minimum Distance Theorem, [LS2]

Theorem

Let $P \subset \mathbb{R}^m$ be an integral convex polytope. Let d be a positive integer and assume that in every set $T \subset (\mathbb{F}_q^*)^m$ with $|T| = (q - 1)^m - (d - 1)$ there exists some $S \subset T$ with $|S| = \ell$ such that $\det V(P; S) \neq 0$. Then the minimum distance satisfies $d(C_P) \geq d$.

Proof: For all S, $\det V(P; S) \neq 0 \Rightarrow$ the homogeneous linear system obtained from the generator matrix, in columns corresponding to S, has only the trivial solution so there are no nonzero codewords with $(q - 1)^m - (d - 1)$ zero entries. Hence every nonzero codeword has $\geq d$ nonzero entries.
Codes from simplices

Consider $C_{P_\ell(m)}$ for $P_\ell(m)$ an m-dimensional simplex of the form

$$P_\ell(m) = \text{conv}\{0, \ell e_1, \ldots, \ell e_m\},$$

where the e_i are the standard basis vectors in \mathbb{R}^m.

(Corresponding toric variety is the degree ℓ Veronese embedding of \mathbb{P}^m. The corresponding Vandermonde matrices also arise in the study of multivariate interpolation using polynomials of bounded total degree.)

Need to identify S for which $\det(V(P_\ell(m); S)) \neq 0$.
Definition

If $m = 1$, an ℓth order simplicial configuration is any collection of $\binom{1+\ell}{\ell}$ distinct points in \mathbb{F}_q^*. For $m \geq 2$, we will say that a collection S of $\binom{m+\ell}{\ell}$ points in $(\mathbb{F}_q^*)^m$ is an m-dimensional ℓth order simplicial configuration if the following conditions hold:

1. For some i, $1 \leq i \leq m$, there are hyperplanes $x_i = a_1, x_i = a_2, \ldots, x_i = a_{\ell+1}$ such that for each $1 \leq j \leq \ell + 1$, S contains exactly $\binom{m-1+j-1}{j-1}$ points with $x_i = a_j$.

2. For each j, $1 \leq j \leq \ell + 1$, the points in $x_i = a_j$ form an $(m-1)$-dimensional simplicial configuration of order $j - 1$.
A “simplicial configuration” in $(\mathbb{F}_8^*)^2$ – “log plot”.
Some observations

- Let S be an m-dimensional ℓth order simplicial configuration consisting of $\binom{m+\ell}{\ell}$ points, in hyperplanes $x_m = a_1, \ldots, x_m = a_{\ell+1}$.
- Write $S = S' \cup S''$ where S' is the union of the points in $x_i = a_1, \ldots, a_\ell$, and S'' is the set of points in $x_i = a_{\ell+1}$.
- Let $\pi: \mathbb{F}_q^m \to \mathbb{F}_q^{m-1}$ be the projection on the first $m-1$ coordinates.
- Both S' and $\pi(S'')$ are themselves simplicial configurations: S' dimension m and order $\ell - 1$; $\pi(S'')$ dimension $m - 1$ and order ℓ.
A recurrence [LS2]

Theorem

Let $P_\ell (m)$ be as above and let S be an ℓth order simplicial configuration of $\binom{m+\ell}{\ell}$ points. Then writing $p = (p_1, \ldots, p_m)$ for points $p \in (\mathbb{F}_q^*)^m$,

$$\det V(P_\ell (m); S) = \pm \prod_{p \in S'} (p_m - a_{\ell+1})$$

$$\cdot \det V(P_{\ell-1} (m); S')$$

$$\cdot \det V(P_\ell (m-1); \pi(S''))$$

(Suggested by a computation in a paper on multivariate interpolation by Chui and Lai – “poised sets” for interpolation by polynomials of degree bounded bounded by ℓ.)
Consequences

Corollary

Let $P_\ell(m)$ be as above and let S be an ℓth order simplicial configuration of $\binom{m+\ell}{\ell}$ points. Then $\det V(P_\ell(m); S) \neq 0$.

Theorem

Let $\ell < q - 1$, and let $P_\ell(m)$ be the simplex in \mathbb{R}^m defined above. Then the minimum distance of the toric code $C_{P_\ell(m)}$ is given by

$$d(C_{P_\ell(m)}) = (q - 1)^m - \ell(q - 1)^{m-1}.$$
The idea of the proof

The result on Vandermondes is used to show
\[d(C_{P_{\ell}(m)}) \geq (q - 1)^m - \ell(q - 1)^{m-1}. \]

A pigeon-hole principle argument constructs simplicial configurations \(S \subset T \) for every \(T \) with \(|T| = \ell(q - 1)^m + 1 \).

Other inequality comes from reducibles \((x_m - a_1) \ldots (x_m - a_\ell)\).
Summary

- Toric codes are interesting and accessible (even for undergraduate projects!)
- But the results on toric codes from simplices and parallelotopes show that d is often quite small relative to k.
- It is an interesting problem to determine criteria for polytopes (or subsets of the lattice points in a polytope) that yield good evaluation codes.
References for further study

