Toric Varieties in Error-Control Coding Theory Math in the Mountains Tutorial

John B. Little

Department of Mathematics and Computer Science
College of the Holy Cross

July 29-31, 2013

A bit of history

- Beginning of coding theory as a mathematical and engineering subject came with a paper "A Mathematical Theory of Communication" by Claude Shannon (1948).
- Shannon lived from 1916 t0 2001, and spent most of his working career at Bell Labs and MIT.
- He also made fundamental contributions to cryptography and the design of computer circuitry in earlier work coming from his Ph.D. thesis.
- Other interests - inventing gadgets, juggling, unicycles, chess(!)

Shannon's conceptual communication set-up

Examples

This is a very general framework, incorporating examples such as

- communication with deep space exploration craft (Mariner, Voyager, etc. - the most important early application)
- storing/retrieving information in computer memory
- storing/retrieving audio information (CDs)
- storing/rerieving video information (DVD and Blu-Ray disks)
- wireless communication

A main goal of coding theory is the design of coding schemes that achieve error control: ability to detect and correct errors in received messages.

The case we will look at

- We'll consider "linear block codes" - vector subspaces C of \mathbb{F}_{q}^{n} for some n.
- parameters: $n, k=\operatorname{dim}_{\mathbb{F}_{q}}(C)$,

$$
d=\min _{x \neq y \in C} d(x, y)=\min _{x \neq 0 \in C} \text { weight }(x)
$$

(Hamming minimum distance/weight)

- $t=\left\lfloor\frac{d-1}{2}\right\rfloor \Rightarrow$ all errors of weight $\leq t$ can be corrected by "nearest neighbor decoding"
- Good codes: k / n not too small (so not extremely redundant), but at same time d or d / n not too small.

Reed-Solomon codes

- Pick a primitive element α for \mathbb{F}_{q} (i.e. generator of the cyclic multiplicative group of field), and write the nonzero elements of \mathbb{F}_{q} as $1, \alpha, \ldots, \alpha^{q-2}$.
- Let $L_{k}=\left\{f \in \mathbb{F}_{q}[x]: \operatorname{deg} f<k\right\}$. Then

$$
\begin{aligned}
e v: L_{k} & \rightarrow \mathbb{F}_{q}^{q-1} \\
f & \mapsto\left(f(1), f(\alpha), \ldots, f\left(\alpha^{q-2}\right)\right)
\end{aligned}
$$

is linear and one-to-one if $k<q$. The image is called $R S(k, q)$.

- All f of degree $<k$ have at most $k-1$ roots in \mathbb{F}_{q} (and some have exactly that many)

$$
\Rightarrow d=(q-1)-(k-1)=n-k+1 .
$$

(Singleton bound: $d \leq n-k+1$.)

An example

Using the standard monomial basis for L_{k} :

$$
\left\{1, x, x^{2}, x^{3}, \ldots, x^{k-1}\right\}
$$

The Reed-Solomon code $R S(3,16)$ (parameters: $n=15, k=3, d=13$ over \mathbb{F}_{16}, so $16^{3}=4096$ distinct codewords) has generator matrix:

$$
G=\left(\begin{array}{cccccccc}
1 & 1 & 1 & \cdots & 1 & 1 & \cdots & 1 \\
1 & \alpha & \alpha^{2} & \cdots & \alpha^{7} & \alpha^{8} & \cdots & \alpha^{14} \\
1 & \alpha^{2} & \alpha^{4} & \cdots & \alpha^{14} & \alpha & \cdots & \alpha^{13}
\end{array}\right)
$$

(means: the rows of G form a basis for $C=R S(3,16)$).

How Reed-Solomon codes are used

- Reed-Solomon codes are among the most useful codes in engineering practice in situations where errors tend to occur in "bursts" rather than randomly.
- E.g., $R S(3,16)$ has $d=13$, corrects any error vector of weight $\leq\left\lfloor\frac{13-1}{2}\right\rfloor=6$ in a received word over $\mathbb{F}_{16} \cong \mathbb{F}_{2}^{4}$.
- A "burst" of up to 20 consecutive bit errors would affect at most 6 of the symbols of the message thought of as elements of \mathbb{F}_{16}. $R S(3,16)$ can correct any 20 or fewer consecutive bit errors in a codeword.
- Also very efficient algebraic decoding algorithms (Berlekamp-Massey).
- Basis for the error-control coding used, for example, in the CD audio system, in communications with deep-space exploration craft like Voyager, etc.

Toric code basics

Introduced by J. Hansen ~ 1997. Elementary description:

- Let P be an integral convex polytope in $\mathbb{R}^{m}, m \geq 1$.
- Points β in the finite set $P \cap \mathbb{Z}^{m}$ correspond to monomials x^{β} (multi-index notation)
- Let $L_{P}=\operatorname{Span}\left\{x^{\beta}: \beta \in P \cap \mathbb{Z}^{m}\right\}$.
- Then consider the toric evaluation map

$$
\begin{aligned}
e v: L_{P} & \rightarrow \mathbb{F}_{q}^{(q-1)^{m}} \\
f & \mapsto\left(f(\gamma): \gamma \in\left(\mathbb{F}_{q}^{*}\right)^{m}\right)
\end{aligned}
$$

Image is the toric code $C_{P}\left(\mathbb{F}_{q}\right)$.

First example, and "generalized" toric codes

- Example: The Reed-Solomon code $R S(k, q)$ is obtained with this construction by taking $P=[0, k-1] \subset \mathbb{R}$, since $P \cap \mathbb{Z}=\{0,1, \ldots, k\}$ and $L_{P}=\operatorname{Span}\left\{1, x, \ldots, x^{k-1}\right\}$.
- Can also do the same construction for any $S \subseteq P \cap \mathbb{Z}^{m}$
- Get subcodes of $C_{P}\left(\mathbb{F}_{q}\right)$ in this way; will denote them by $C_{S}\left(\mathbb{F}_{q}\right)$
- Also very natural to consider these more general codes for several reasons (more on this later)

Why are they interesting?

- All $C_{S}\left(\mathbb{F}_{q}\right)$ have properties parallel to RS codes, e.g. they are " m-dimensional cyclic" codes (set of codewords is closed under a large automorphism group).
- Computer searches by L-, students, and most systematically and recently, Brown and Kasprzyk [BK] have showed that some very good $m=2$ generalized toric codes exist (better than any previously known codes in standard databases).
- (No argument about this, here, I hope!) Can apply lots of nice algebraic geometry to study their properties (toric varieties, intersection theory, line bundles, Riemann-Roch theorems)

Best known codes from this construction

- an $m=2$ generalized toric code over \mathbb{F}_{8} with parameters [49, 8, 34] - found by one group at MSRI-UP REU in 2009
- different $m=3$ generalized toric codes over \mathbb{F}_{5} with parameters $[64,8,42]$ - another group at MSRI-UP REU in 2009 and Alex Simao
- Seven new "champions" over \mathbb{F}_{8} found by Brown and Kasprzyk, reported in [BK], apparently motivated by the following one L-found in 2011.
- With hindsight, all can be described in other ways too; toric construction gave a framework for finding them, though.

A typical "current champion"

Over \mathbb{F}_{8}, take S given by filled circles $(P=\operatorname{conv}(S)$ shown $)$:

Get a $[49,12,28]$ code - best previously known for $n=49$, $k=12$ over \mathbb{F}_{8} was $d=27$.

How were these found?

- Nicest way to say it - exhaustive ([BK]) and/or "heuristic" (L-, etc.) search through space of possible S
- Not very satisfying, though!
- There are general theoretical lower and upper bounds on d that apply to these codes (esp. work of D. Ruano, P. Beelen) but
- Not very easy to apply, and rarely sharp
- Need some additional tools to make progress!

A useful equivalence relation

Take $S \subset[0, q-2]^{m} \simeq\left(\mathbb{Z}_{q-1}\right)^{m}$, so corresponding monomials are linearly independent as functions on $\left(\mathbb{F}_{q}^{*}\right)^{m}$.

Theorem

If $S^{\prime}=T(S)$ for some $T=\operatorname{AGL}\left(m, \mathbb{Z}_{q-1}\right), C_{S^{\prime}}\left(\mathbb{F}_{q}\right)$ is monomially equivalent to $C_{S}\left(\mathbb{F}_{q}\right)$.

Monomial equivalence: There is an $n \times n$ permutation matrix Π and an $n \times n$ invertible diagonal matrix Q such that $G^{\prime}=G Q \Pi$. This implies $d\left(C_{S}\right)=d\left(C_{S^{\prime}}\right)$.

Comments

Note: Even when we take $S=P \cap \mathbb{Z}^{m}$ for a polytope, S^{\prime} may not be $P^{\prime} \cap \mathbb{Z}^{m}$ for any P^{\prime}, so also need to study "generalized" toric codes from arbitrary S to make use of this idea.
[BK] uses this in a crucial way - idea was enumerate the affine equivalence classes of S contained in squares $[0, \ell] \times[0, \ell]$

There are also cases where $C_{S}\left(\mathbb{F}_{q}\right)$ and $C_{S^{\prime}}\left(\mathbb{F}_{q}\right)$ are monomially equivalent, but S and S^{\prime} come from different affine equivalence classes. The implication in the theorem only goes the way stated.

Small needles in huge haystacks!

For $m=3, q=5$, the generating function for number of $\operatorname{AGL}\left(3, \mathbb{Z}_{4}\right)$-orbits on k-sets in \mathbb{Z}_{4}^{3} :

$$
\begin{aligned}
& 1+x+2 x^{2}+4 x^{3}+16 x^{4}+37 x^{5}+147 x^{6}+ \\
& 498 x^{7}+2128 x^{8}+8790 x^{9}+39055 x^{10}+165885 x^{11}+ \\
& 678826 x^{12}+2584627 x^{13}+\cdots
\end{aligned}
$$

The "middle term" here is $333347580600 x^{32}(!)$
"Most" of these subsets give quite uninteresting codes. But one of the 2128 orbits of size $k=8$ consists of codes with $d=42$, the "champion" mentioned before.

From algebraic geometry

- A lattice polytope P defines a toric variety X_{P}.
- Also get a line bundle $\mathcal{L}=\mathcal{L}_{P}$ specified by P, with basis of sections given by monomials corresponding to the lattice points in P.
- Subsets of $P \cap \mathbb{Z}^{m}$ correspond to subspaces of $H^{0}(X, \mathcal{L})$.
- Codewords come by evaluation, and the issue is: how many \mathbb{F}_{q}-rational zeroes can a section have?
- In case $m=2$, main results of [LS1] show that for q sufficiently large $d\left(C_{P}\left(\mathbb{F}_{q}\right)\right)$, can be bounded above and below by looking at subpolytopes $P^{\prime} \subseteq P$ that decompose as Minkowski sums.

Intuition for proof

- Minkowski-reducible subpolygons \leftrightarrow reducible sections (Newton polygon of a product is Minkowski sum of Newton polygons of factors).
- Hasse-Weil upper and lower bounds for an irreducible curve Y :

$$
q+1-2 p_{a}(Y) \sqrt{q} \leq\left|Y\left(\mathbb{F}_{q}\right)\right| \leq q+1+2 p_{a}(Y) \sqrt{q}
$$

- Using this, some intersection theory, and Riemann-Roch on the toric surface defined by P, [LS1] bounds number of \mathbb{F}_{q}-rational points on any reducible section of \mathcal{L}_{P} in $\left(\mathbb{F}_{q}^{*}\right)^{2} \subset X_{P}$
- \Rightarrow when $q>$ (a crude but explicit lower bound), reducible curves with more components must have more \mathbb{F}_{q}-rational points than those with fewer components.

From lattice polytopes

- Idea was tightened and extended in [SS1] - d for $C_{P}\left(\mathbb{F}_{q}\right)$ is connected with $L(P)=$ full Minkowski length of P - the maximum number of summands in a Minkowski sum decomposition $Q=Q_{1}+\cdots+Q_{L}$ for $Q \subseteq P$.
- In [SS1], Soprunov and Soprunova showed that in the plane, every Minkowski-indecomposable polygon is lattice equivalent to either
(a) the unit lattice segment $\operatorname{conv}\{(0,0),(1,0)\}$,
(b) the unit lattice simplex $\operatorname{conv}\{(0,0),(1,0),(0,1)\}$, or
(c) the "exceptional triangle" $T_{0}=\operatorname{conv}\{(0,0),(1,2),(2,1)\}$

The Soprunov-Soprunova Theorem

Theorem (SS1)

If q is larger than an explicit (smaller than in [LS1]) lower bound depending on $L(P)$ and the area of P, then

$$
\begin{equation*}
d\left(C_{P}\left(\mathbb{F}_{q}\right)\right) \geq(q-1)^{2}-L(P)(q-1)-\lfloor 2 \sqrt{q}\rfloor+1 \tag{1}
\end{equation*}
$$

and if no maximally decomposable $Q \subset P$ contains an exceptional triangle, then

$$
\begin{equation*}
d\left(C_{P}\left(\mathbb{F}_{q}\right)\right) \geq(q-1)^{2}-L(P)(q-1) . \tag{2}
\end{equation*}
$$

An interesting polygon for $q \geq 5$

- P contains $P^{\prime}=\operatorname{conv}\{(1,0),(2,0),(1,2),(2,2)\}$ $\left(=P_{1}+P_{2}+P_{3}, P_{i}\right.$ line segments) and $P^{\prime \prime}=\operatorname{conv}\{(1,0),(1,1),(3,2),(3,3)\}$ (similar).
- No other decomposable $Q \subset P$ with more than three Minkowski summands

Reducible curves

Bounds from [LS1] or [SS1] \Rightarrow for q suff. large

$$
d\left(C_{P}\left(\mathbb{F}_{q}\right)\right) \geq(q-1)^{2}-3(q-1)
$$

From P^{\prime} above, obtain reducible sections of L_{P} :
$s=x(x-a)(y-b)(y-c)$, with $3(q-1)-2$ zeroes in $\left(\mathbb{F}_{q}^{*}\right)^{2}$ if $a, b, c \in \mathbb{F}_{q}^{*}, b \neq c$. Hence,

$$
d\left(C_{P}\left(\mathbb{F}_{q}\right)\right) \leq(q-1)^{2}-3(q-1)+2
$$

Minimum distances over different fields

Magma computations (package written by D. Joyner) show:

$$
\begin{array}{rll}
d\left(C_{P}\left(\mathbb{F}_{5}\right)\right)=6 & \text { vs. } & 4^{2}-3 \cdot 4+2=6 \\
d\left(C_{P}\left(\mathbb{F}_{7}\right)\right)=20 & \text { vs. } & 6^{2}-3 \cdot 6+2=20 \\
d\left(C_{P}\left(\mathbb{F}_{8}\right)\right)=28 & \text { vs. } & 7^{2}-3 \cdot 7+2=30 \\
d\left(C_{P}\left(\mathbb{F}_{9}\right)\right)=42 & \text { vs. } & 8^{2}-3 \cdot 8+2=42 \\
d\left(C_{P}\left(\mathbb{F}_{11}\right)\right)=72 & \text { vs. } & 10^{2}-3 \cdot 10+2=72
\end{array}
$$

More on $q=8$

Where does a codeword with $49-28=21$ zero entries come from? Magma: exactly 49 such words. One of them comes, for instance, from the evaluation of

$$
\begin{aligned}
y+x^{3} y^{3}+x^{2} & \equiv y\left(1+x^{3} y^{2}+x^{2} y^{6}\right) \\
& \equiv y\left(1+x^{3} y^{2}+\left(x^{3} y^{2}\right)^{3}\right)
\end{aligned}
$$

Here congruences are $\bmod \left\langle x^{7}-1, y^{7}-1\right\rangle$, the ideal of the \mathbb{F}_{8}-rational points of the 2-dimensional torus. So
$1+x^{3} y^{2}+\left(x^{3} y^{2}\right)^{3}$ has exactly the same zeroes in $\left(\mathbb{F}_{8}^{*}\right)^{2}$ as $y+x^{3} y^{3}+x^{2}$.

Arithmetic of \mathbb{F}_{8} matters!

$1+u+u^{3}$ is one of the two irreducible polynomials of degree 3 in $\mathbb{F}_{2}[u]$, hence

$$
\mathbb{F}_{8} \cong \mathbb{F}_{2}[u] /\left\langle 1+u+u^{3}\right\rangle
$$

If β is a root of $1+u+u^{3}=0$ in \mathbb{F}_{8}, then $1+x^{3} y^{2}+\left(x^{3} y^{2}\right)^{3}=$

$$
\left(x^{3} y^{2}-\beta\right)\left(x^{3} y^{2}-\beta^{2}\right)\left(x^{3} y^{2}-\beta^{4}\right)
$$

and there are exactly $3 \cdot 7=21$ points in $\left(\mathbb{F}_{8}^{*}\right)^{2}$ where this is zero. Still a sort of reducibility that produces a section with the largest number of zeroes here, even though the reducibility only appears when we look modulo the ideal $\left\langle x^{7}-1, y^{7}-1\right\rangle$ (!). Similar phenomena in many other cases for small q.

Another Example: $P=\operatorname{conv}\{(0,0),(2,0),(3,1),(1,4)\}$

Have $L(P)=4$, and P contains just one Minkowski sum of 4 indecomposable polygons, namely the line segment
$Q=\operatorname{conv}\{(1,0),(1,4)\}$. Expect for q sufficiently large,

$$
d\left(C_{P}\left(\mathbb{F}_{q}\right)\right)=(q-1)^{2}-4(q-1) .
$$

Leaving out lattice points

Now, study $C_{S}\left(\mathbb{F}_{q}\right)$ for S contained in P from before:

What happens? $k=7$ only (not $k=10$), and ...

Example, continued

$$
\begin{aligned}
d\left(C_{S}\left(\mathbb{F}_{7}\right)\right)=18 \quad \text { vs. } \quad 6^{2}-4 \cdot 6=12 \\
d\left(C_{S}\left(\mathbb{F}_{8}\right)\right)=33 \quad \text { vs. } \quad 7^{2}-4 \cdot 7=21 \\
d\left(C_{S}\left(\mathbb{F}_{9}\right)\right)=32 \quad=\quad 8^{2}-4 \cdot 8=32 \\
d\left(C_{S}\left(\mathbb{F}_{11}\right)\right)=70 \quad \text { vs. } \quad 10^{2}-4 \cdot 10=60 \\
d\left(C_{S}\left(\mathbb{F}_{13}\right)\right)=96 \quad=\quad 12^{2}-4 \cdot 12=96 \\
d\left(C_{S}\left(\mathbb{F}_{16}\right)\right)=165=15^{2}-4 \cdot 15=165 \\
d\left(C_{S}\left(\mathbb{F}_{17}\right)\right)=192=16^{2}-4 \cdot 16=192 \\
d\left(C_{S}\left(\mathbb{F}_{19}\right)\right)=270 \quad \text { vs. } \quad 18^{2}-4 \cdot 18=252 \\
d\left(C_{S}\left(\mathbb{F}_{q}\right)\right) \quad=\quad(q-1)^{2}-4(q-1) \quad \text { all } q \geq 23(?)
\end{aligned}
$$

The minimum weight words

- $C_{S}\left(\mathbb{F}_{q}\right) \subset C_{P}\left(\mathbb{F}_{q}\right)$, so $d\left(C_{S}\left(\mathbb{F}_{q}\right)\right) \geq d\left(C_{P}\left(\mathbb{F}_{q}\right)\right)$ and
- Conjecture: $d\left(C_{P}\left(\mathbb{F}_{q}\right)\right)=(q-1)^{2}-4(q-1)$ for all $q \geq 23$. Evidence: SS Theorem implies \geq, but the C_{P} code contains the words $\operatorname{ev}\left(x\left(y^{4}+a_{3} y^{3}+a_{2} y^{2}+a_{1} y+a_{0}\right)\right)$ for all $a_{i} \in \mathbb{F}_{q}$.
- Some of those quartic polynomials factor $\left(y-\beta_{1}\right) \cdots\left(y-\beta_{4}\right)$ for β_{j} distinct $\in \mathbb{F}_{q}^{*}$, so $4(q-1)$ zeroes in $\left(\mathbb{F}_{q}^{*}\right)^{2}$.
- In \mathbb{F}_{q} for q sufficiently large, there are also polynomials of the form $y^{4}+a_{1} y+a_{0}$ that factor this way; bounds not explicit enough to yield $q \geq 23$, though!

Two ways to think about this ...

- First (the "glass is half-empty" point of view): leaving lattice points out of $P \cap \mathbb{Z}^{m}$ is only likely to improve d dramatically for toric codes when q is small
- Second (the "glass is half-full" point of view): over larger fields, for many sets of lattice points S with $\operatorname{conv}(S)=P$, can often include all of the lattice points in $P \cap \mathbb{Z}^{m}$ and get toric codes of the same minimum distance and larger dimension

Taking toric codes "to the next dimension(s)"

- This whole general area has only started to be explored
- Intersection theory on higher-dimensional varieties is more subtle and not so obvious how to apply it
- Questions about polytopes and toric varieties in higher dimensions are also more subtle (e.g. classification of Minkowski-irreducible polytopes)
- Some preliminary work in [LS2] and [SS2]

A different approach

Square submatrices of the generator matrix G for a Reed-Solomon code are usual (one-variable) Vandermonde matrices:

$$
V=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\alpha^{j_{1}} & \alpha^{j_{2}} & \cdots & \alpha^{j_{k}} \\
\vdots & \vdots & \ddots & \vdots \\
\left(\alpha^{j_{1}}\right)^{k-1} & \left(\alpha^{2_{2}}\right)^{k-1} & \cdots & \left(\alpha^{k k}\right)^{k-1}
\end{array}\right)
$$

(Well-known and standard observation for studying these codes

- implies the rows of G are linearly independent, for instance.)

General Vandermondes

- Let P be an integral convex polytope, and suppose $P \cap \mathbb{Z}^{m}=\{e(i): 1 \leq i \leq \#(P)\}$.
- Let $S=\left\{p_{j}: 1 \leq j \leq \#(P)\right\}$ be any set of $\#(P)$ points in $\left(\mathbb{F}_{q}^{*}\right)^{m}$.
- Picking orderings, define $V(P ; S)$, the Vandermonde matrix associated to P and S, to be the $\#(P) \times \#(P)$ matrix

$$
V(P ; S)=\left(p_{j}^{e(i)}\right)
$$

where $p_{j}^{e(i)}$ is the value of the monomial $x^{e(i)}$ at the point p_{j}.

Other uses

Interestingly enough, the multivariate Vandermonde matrices have also made appearances in the study of

- multivariate polynomial interpolation
- polynomial equation solving
- Gröbner basis theory
- multipolynomial resultants

An Example

Let $P=\operatorname{conv}\{(0,0),(2,0),(0,2)\}$ in \mathbb{R}^{2}, and $S=\left\{\left(x_{j}, y_{j}\right)\right\}$ be any set of 6 points in $\left(\mathbb{F}_{q}^{*}\right)^{2}$. For one particular choice of ordering of the lattice points in P, we have $V(P ; S)=$

$$
\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} \\
y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6} \\
x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & x_{4}^{2} & x_{5}^{2} & x_{6}^{2} \\
x_{1} y_{1} & x_{2} y_{2} & x_{3} y_{3} & x_{4} y_{4} & x_{5} y_{5} & x_{6} y_{6} \\
y_{1}^{2} & y_{2}^{2} & y_{3}^{2} & y_{4}^{2} & y_{5}^{2} & y_{6}^{2}
\end{array}\right)
$$

Minimum Distance Theorem, [LS2]

Theorem

Let $P \subset \mathbb{R}^{m}$ be an integral convex polytope. Let d be a positive integer and assume that in every set $T \subset\left(\mathbb{F}_{q}^{*}\right)^{m}$ with $|T|=(q-1)^{m}-(d-1)$ there exists some $S \subset T$ with $|S|=\#(P)$ such that det $V(P ; S) \neq 0$. Then the minimum distance satisfies $d\left(C_{P}\right) \geq d$.

Proof: For all S, $\operatorname{det} V(P ; S) \neq 0 \Rightarrow$ the homogeneous linear system obtained from the generator matrix, in columns corresponding to S, has only the trivial solution so there are no nonzero codewords with $(q-1)^{m}-(d-1)$ zero entries. Hence every nonzero codeword has $\geq d$ nonzero entries.

Codes from simplices

Consider $C_{P_{\ell}(m)}$ for $P_{\ell}(m)$ an m-dimensional simplex of the form

$$
P_{\ell}(m)=\operatorname{conv}\left\{\mathbf{0}, \ell \mathbf{e}_{1}, \ldots, \ell \mathbf{e}_{m}\right\}
$$

where the \mathbf{e}_{i} are the standard basis vectors in \mathbb{R}^{m}. (Corresponding toric variety is the degree ℓ Veronese embedding of \mathbb{P}^{m}. The corresponding Vandermonde matrices also arise in the study of multivariate interpolation using polynomials of bounded total degree.)

Need to identify S for which $\operatorname{det}\left(V\left(P_{\ell}(m) ; S\right)\right) \neq 0$.

Definition

If $m=1$, an ℓ th order simplicial configuration is any collection of $\binom{1+\ell}{\ell}$ distinct points in \mathbb{F}_{q}^{*}. For $m \geq 2$, we will say that a collection S of $\binom{m+\ell}{\ell}$ points in $\left(\mathbb{F}_{q}^{*}\right)^{m}$ is an m-dimensional ℓ th order simplicial configuration if the following conditions hold:
(1) For some $i, 1 \leq i \leq m$, there are hyperplanes $x_{i}=a_{1}, x_{i}=a_{2}, \ldots, x_{i}=a_{\ell+1}$ such that for each $1 \leq j \leq \ell+1$, S contains exactly $\binom{m-1+j-1}{j-1}$ points with $x_{i}=a_{j}$.
(2) For each $j, 1 \leq j \leq \ell+1$, the points in $x_{i}=a_{j}$ form an ($m-1$)-dimensional simplicial configuration of order $j-1$.

A "simplicial configuration" of order 2 in $\left(\mathbb{F}_{8}^{*}\right)^{2}$ - "log plot".

Some observations

- Let S be an m-dimensional ℓ th order simplicial configuration consisting of $\binom{m+\ell}{\ell}$ points, in hyperplanes $x_{m}=a_{1}, \ldots, x_{m}=a_{\ell+1}$.
- Write $S=S^{\prime} \cup S^{\prime \prime}$ where S^{\prime} is the union of the points in $x_{i}=a_{1}, \ldots, a_{\ell}$, and $S^{\prime \prime}$ is the set of points in $x_{i}=a_{\ell+1}$.
- Let $\pi: \mathbb{F}_{q}^{m} \rightarrow \mathbb{F}_{q}^{m-1}$ be the projection on the first $m-1$ coordinates.
- Both S^{\prime} and $\pi\left(S^{\prime \prime}\right)$ are themselves simplicial configurations: S^{\prime} dimension m and order $\ell-1 ; \pi\left(S^{\prime \prime}\right)$ dimension $m-1$ and order ℓ.

A recurrence

Theorem (LS2)

Let $P_{\ell}(m)$ be as above and let S be an ℓ th order simplicial configuration of $\binom{m+\ell}{\ell}$ points. Then writing $p=\left(p_{1}, \ldots, p_{m}\right)$ for points $p \in\left(\mathbb{F}_{q}^{*}\right)^{m}$,

$$
\begin{aligned}
\operatorname{det} V\left(P_{\ell}(m) ; S\right)= \pm & \prod_{p \in S^{\prime}}\left(p_{m}-a_{\ell+1}\right) \\
& \cdot \operatorname{det} V\left(P_{\ell-1}(m) ; S^{\prime}\right) \\
& \cdot \operatorname{det} V\left(P_{\ell}(m-1) ; \pi\left(S^{\prime \prime}\right)\right)
\end{aligned}
$$

(Suggested by a computation in a paper on multivariate interpolation by Chui and Lai - "poised sets" for interpolation by polynomials of degree bounded bounded by ℓ.)

Consequences

Corollary

Let $P_{\ell}(m)$ be as above and let S be an ℓ th order simplicial configuration of $\binom{m+\ell}{\ell}$ points. Then $\operatorname{det} V\left(P_{\ell}(m) ; S\right) \neq 0$.

Theorem

Let $\ell<q-1$, and let $P_{\ell}(m)$ be the simplex in \mathbb{R}^{m} defined above. Then the minimum distance of the toric code $C_{P_{\ell}(m)}$ is given by

$$
d\left(C_{P_{\ell}(m)}\right)=(q-1)^{m}-\ell(q-1)^{m-1}
$$

The idea of the proof

The result on Vandermondes is used to show $d\left(C_{P_{\ell}(m)}\right) \geq(q-1)^{m}-\ell(q-1)^{m-1}$.

A pigeon-hole principle argument constructs simplicial configurations $S \subset T$ for every T with $|T|=\ell(q-1)^{m}+1$.

Other inequality comes from reducibles $\left(x_{m}-a_{1}\right) \ldots\left(x_{m}-a_{\ell}\right)$.

Summary

- Toric codes are interesting and accessible (even for undergraduate projects!)
- But the results on toric codes from simplices and parallelotopes show that d is often quite small relative to k.
- It is an interesting problem to determine criteria for polytopes (or subsets of the lattice points in a polytope) that yield good evaluation codes.

References for further study

BK G. Brown and A. Kasprzyk, Seven new champion linear codes, LMS Journal of Computation and Mathematics, 16 (2013), 109-117.

LS1 J. Little and H. Schenck Toric codes and Minkowski sums, SIAM J. of Discrete Math. 20 (2006), 999-1014.
LS2 J. Little and R. Schwarz, Toric Codes and Vandermonde matrices, AAECC 18 (2007), 349-367.
SS1 Soprunov, I. and Soprunova, J. Toric surface codes and Minkowski length of polygons. SIAM J. Discrete Math. 23, 384-400.
SS2 Soprunov, I.; Soprunova, J. Bringing toric codes to the next dimension. SIAM J. Discrete Math. 24 (2010), 655-665.

