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Introduction

Many of the most active areas of statistical research
involve large sparse data problems where the number of
variables and/or parameters is large, especially relative to
the number of independent observations.
Standard statistical theory for estimation and results
related to asymptotic behavior often fail in such settings.
The computational tools associated with algebraic
statistics are useful often only for low-dimensional
problems, e.g., involving a small number of parameters.
In this presentation I describe how algebraic statistical and
the related computational tools can nonetheless provide
important insights of value in large sparse contingency
table and network settings.
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Outline for Remainder of My Talk

Five examples and the challenges they have and continue
to pose for algebraic statistics:

1 Example 1—The National Halothane Study
2 Example 2—The National Long Term Care Survey
3 Example 3—Monks in a Monastery
4 Example 4—MIPS Curated PPI in Yeast
5 Example 5—The Framingham Obesity Study

Algebraic statistics results and open problems arising from
contingency table and network settings.
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Example 1—The National Halothane Study

50,000 hospital records examined.
17,000 deaths arrayed in the form of a very large sparse
multi-way contingency table:

34 hospitals
5 anesthetics
5 years
2 genders
5 age groups
7 risk levels
type of operation

Sample of 25 cases per hospital to estimate the
denominator, making up the residual 33,000 cases.
34× 5× 5× 2× 5× 7×? = 60,500×?
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Example 1—Log-linear Models

Work on the Halothane study led to the development of
log-linear model theory.

Major issue of when MLEs exist for large sparse tables.
Also geometric representations, especially for 2× 2 tables.

“Surface of Independence” = Segre Variety
Much later we had:

Markov bases for conditional distributions given margins.
Representation of log-linear model parameters in terms of
polynomial maps.
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Algebraic Statistics and Log-linear Models

A tale of two book covers:

Computational tools helped with the original Halothane
Study problem of existence of MLEs (Ericksen et al. 2006),
but only for relatively low dimensional problems.
Full solution came in Rinaldo’s thesis linking algebraic
statistics to statistical theory for discrete exponential
families.
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Example 2—The National Long Term Care Survey

Longitudinal survey of people aged 65+
Assess chronic disability
6 waves: 1982, 1984, 1989, 1994, 1999, 2004
Measures ADLs and IADLs:

Activities of daily living (ADL): Basic self-care (eating,
bathing, etc.)—6 binary measures.
Instrumental Activities of Daily Living (IADL): Related to
independent living within a community (preparing meals,
maintaining finances, etc.)—10 binary measures.

Each individual that enters the survey is reinterviewed in all
subsequent waves until death.
Approx. 20k individuals per wave. 45,009 unique
individuals sampled in all six waves together. Each wave
incorporates ≈ 5k new subjects to replace those who have
died.
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Longitudinal Modeling of NLTCS—Overview

Sequential measurements on the same individuals allow to
assess individual disability trajectories over time.

Specifically, we want to

Understand evolution over time:

Individuals
Population

Identify ‘typical’ evolutions over time
Account for and understand individual variability
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Two Types of Models for NLTCS Data

Latent class models (naive Bayes mixture):
Works at the population level.
For cross-section or single point in time, see algebraic
characterization of Fienberg et. al. (2010).

Identification issue clarified by algebraic statistics.
Multi-modality of likelihood function.
Related to Sturmfels’ 100 Swiss Franc problem.

For full time-varying latent class model we need a state
space structure for the latent classes.

Mixed-membership models:
Works at individual level.
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Longitudinal Trajectory Mixed-Membership Model

Assume the existence of K “ideal classes” or “extreme
profiles”
Assign each individual a Membership Vector:

gi = (gi1,gi2, ...,giK )

with gik > 0 and
∑K

k=1 gik = 1 (gi ∈ ∆K−1).
For the “ideal” individuals, specify the marginal distribution
of response j , at measurement time t , as a function of
some time-dependent covariates.

Pr
(
Yijt = yijt | gik = 1,Xi , θ

)
= fθj|k

(
yijt | Xit

)
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Longitudinal Trajectory Mixed-Membership Model (2)

Mixed Membership: For a generic individual i , we model

Pr
(
Yijt = yijt |gi ,Xi , θ

)
=

K∑
k=1

gik fθj|k (yijt |Xit )

Assuming conditional independence,

Pr (Yi = yi |gi ,Xi , θ ) =
J∏

j=1

Ni∏
t=1

K∑
k=1

gik fθj|k (yijt |Xit )

Assume that the membership vectors are an iid sample
from a common distribution (e.g., Dirichlet) with support on
the K − 1 dimensional unit simplex (∆K−1):

gi |αı
iid∼Dirichlet(α0 × ξ)

with α0 > 0 and ξ = (ξ1, ξ2, ..., ξK ) ∈ ∆K−1.
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Basic Model—Extreme Profile Trajectories

For each extreme profile (gk = 1) specify trajectories of
probability of disability in ADLs as a monotone function of
Age:
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yijt ∼ Bernoulli
[
λj|k (Ageit )

]
λj|k (Xit ) = logit−1 [β0j|k + β1j|k × Ageit

]
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The Mixed-Membership Challenge

Manrique and Fienberg (2010) use MCMC methods to
compute full posterior distribution for this model.

Can we exploit hierarchical structure of mixed-membership
models to get algebraic statistics characterization?
Can we relate such a characterization to MCMC
methodology?
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Example 3: Monks in a Monastery

18 novices observed over two years.
Network data gather at 4 time points; and on multiple
relationships.

See analyses in Airoldi, et al. (2008) JMLR.
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Holland and Leinhardt’s p1 model

n nodes, random occurrence of directed edges.

Describe the probability of an edge occurring between
nodes i and j :

log Pij (0,0) = λij

log Pij (1,0) = λij + αi + βj + θ

log Pij (0,1) = λij + αj + βi + θ

log Pij (1,1) = λij + αi + βj + αj + βi + 2θ + ρij

3 common forms:

ρij = 0 (no reciprocal effect)
ρij = ρ (constant reciprocation factor)
ρij = ρ+ ρi + ρj (edge-dependent reciprocation)
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Estimation for p1

The likelihood function for the p1 model is clearly of
exponential family form.
For the constant reciprocation version, we have

log p1(x) ∝ x++θ +
∑

i

xi+αi +
∑

j

x+jβj +
∑

ij

xijxjiρ (1)

Holland-Leinhardt explored goodness of fit of model
empirically by comparing ρij = 0 vs. ρij = ρ.

The problem is that standard asymptotics (normality and
chi-squared goodness of fit tests) aren’t applicable as the
number of parameters increases with the number of nodes.

Fienberg and Wasserman used the edge-dependent
reciprocation model to test ρij = ρ.
See Goldenberg et al. (2010) review of these and related
models.
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Algebraic Statistics Results

Work done in collaboration with Sonja Petrović and
Alessandro Rinaldo:

Computation of Markov basis elements for n = 3,4,5.
General results follow from computations leading to:

Conjecture

We can obtain minimal Markov (Gröbner) bases for the p1
models from Markov (Gröbner) bases of IAn (the toric ideal of
the edge subring of the graph Gn) by repeated lifting and
overlapping of the binomials in the minimal Markov bases of
various (n − 1)-node subnetworks.

How to use results for (1) existence of MLEs and (2) to
assess fit of p1 to large-scale network settings?
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Example 4—MIPS-Curated PPI in Yeast

871 proteins participate in 15 high-level functions
Graph and adjacency matrix representations

Airoldi et al. (2008). JMLR.
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Example 5: The Framingham Obesity Study

Framingham Study originated in 1940s and focused on
heart disease.
Offspring cohort of n0 = 5124 individuals measured
beginning in 1971 for T = 7 epochs centered at 1971,
1981, 1985, 1989, 1992, 1997, 1999.
Link information on family members and one close friend.
Total number of individuals on whom we have obesity
measures is n = 12,067.
Christakis and Fowler, NEJM, July 2007.
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Example 5: The Framingham Obesity Study
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Network Model Challenges

How to use algebraic statistics results for (1) existence of
MLEs and (2) to assess fit of p1 to large-scale network
settings?

Linking algebraic statistics for loglinear models to results
for p1.
Extending results from p1 to Exponential Random Graph
Models.
Algebraic statistics for mixed-membership stochastic
blockmodels.
Algebraic statistics characterization of dynamic network
models.
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MMSB Model for Monk Data

K = 3 blocks and extreme profiles
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Moral of My Story

My examples come from contingency table settings and an
array of problems involving network structures.

They all involve large sparse data problems where the
number of variables and/or parameters is large, especially
relative to the number of independent observations.

The computational tools associated with algebraic
statistics are often only useful for low-dimensional
problems, e.g., involving a small number of parameters.
I have described how algebraic statistical and the related
computational tools can nonetheless provide important
insights of value in large sparse settings.
There remain many challenges for algebraic statistics in
these contingency table and network modeling settings.
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The End
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Test Computations—From profiles to Individuals
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Test Computations—Individual Trajectories
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Monks in a Monastery

ID faction name order monk left monastery
1 2 Ambrose 9
2 1 Boniface 15
3 1 Mark 7
4 1 Winfrid 12
5 3 Elias 17
6 3 Basil 3
7 3 Simplicius 18
8 2 Berthold 6
9 1 John Bosco 1

10 4 Victor 8
11 2 Bonaventure 5
12 4 Amand 13
13 2 Louis 11
14 1 Albert 16
15 4 Ramuald 10
16 2 Peter 4
17 1 Gregory 2
18 1 Hugh 14
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