Math in the Mountains Toric Varieties Tutorial July 29 - 31, 2013

Exercises on Toric Varieties

- 1. Show that the rational quartic in \mathbf{P}^3 corresponding to $\mathcal{A} = \{(4,0), (3,1), (1,3), (0,4)\}$ is not projectively normal (Harshorne, I.3.18)
- 2. Show that the tetrahedron $P = \text{conv}\{0, e_1, e_2, e_1 + e_2 + 2e_3\} \subset \mathbf{R}^3$ is not normal. (A lattice polytope $P \subset M_{\mathbf{R}}$ is normal if $(kP \cap M) + (\ell P \cap M) = (k + \ell)P \cap M$ for all $k, \ell \in \mathbf{N}$.)
- 3. Show that the complete fan Σ in $N_{\mathbf{R}} \simeq \mathbf{R}^2$ with rays $\mathbf{R}_{\geq 0}e_1$, $\mathbf{R}_{\geq 0}e_2$, and $\mathbf{R}_{\geq 0}(-e_1-e_2)$ gives $X_{\Sigma} = \mathbf{P}^2$.
- 4. Identify the toric surface given by the complete fans with rays $\pm \mathbf{R}_{\geq 0}e_1$, $\pm \mathbf{R}_{\geq 0}e_2$ (four 2-dimensional cones)
- 5. Identify the toric surface given by the complete fans with rays $\mathbf{R}_{\geq 0}e_1$, $\pm \mathbf{R}_{\geq 0}e_2$, and $\pm \mathbf{R}_{\geq 0}(-e_1 + ae_2)$ where $a \geq 1$ (four 2-dimensional cones)
- 6. Show using the toric description that $Cl(\mathbf{P}^1) = \mathbf{Z}$.
- 7. Complete the proof that we have an exact sequence for the class group of X_{Σ} :

$$M \to \mathbf{Z}^{|\Sigma(1)|} \to \mathrm{Cl}(X_{\Sigma}) \to 0$$

where the first map is given by the integer matrix whose rows are the primitive generators of the rays of Σ .

8. (Toric surfaces, Riemann-Roch, etc.) The Riemann-Roch theorem on a smooth algebraic surface X can be written as

(1)
$$\chi(\mathcal{O}_X(D)) = \frac{D(D - K_X)}{2} + \chi(\mathcal{O}_X),$$

where D is a divisor on X, K_X is the canonical divisor, and

$$\chi(\mathcal{F}) = h^0(\mathcal{F}) - h^1(\mathcal{F}) + h^2(\mathcal{F})$$

is the Euler characteristic (there would be additional terms if $\dim X > 2$).

- a. Given a lattice polytope P in \mathbb{Z}^2 , show how to use the facet description of P to find D and Σ such that a basis for $H^0(\mathcal{O}_{X_{\Sigma}}(D))$ is given by $P \cap \mathbb{Z}^2$.
- b. Show that in this case $\chi(\mathcal{O}_{X_{\Sigma}}(D)) = |P \cap \mathbf{Z}^2|$ and $\chi(\mathcal{O}_{X_{\Sigma}}) = 1$ (Hint: Demazure + support function.)
- c. Replace D with nD in the formula (1) above to get

$$h^{0}(\mathcal{O}_{X_{\Sigma}}(nD)) = \frac{D^{2}}{2}n^{2} - \frac{DK}{2}n + 1$$

d. Pick's formula for a lattice polygon implies

$$|nP \cap \mathbf{Z}^2| = \text{Area}(P)n^2 + \frac{|\partial P \cap \mathbf{Z}^2|}{2}n + 1.$$

Check this for the triangle $P = \text{conv}\{(0,0),(2,0),(0,2)\}.$

e. Conclude: We can compute D^2 and DK from purely combinatorial data from P for a toric surface. In fact $K_{X_{\Sigma}} = -\sum_{\rho \in \Sigma(1)} D_{\rho}$ when X_{Σ} is smooth.

Exercises on Algebraic Statistics Topics

- 1. Give an integer matrix \mathcal{A} such that the corresponding toric model coincides with the 3×3 independence model. Generalize to obtain a matrix corresponding to the $k \times \ell$ independence model for all $k, \ell \geq 2$.
- 2. For the Jukes-Cantor model,
 - a. Compute P(ACG), P(AAC), P(ACA) and P(CAA). Explain where the p_{dis} , p_{ij} polynomials come from and why every component of the full Jukes-Cantor model can be expressed using just these 5 distinct polynomials.
 - b. Verify that $p_{123} + p_{dis} + p_{12} + p_{13} + p_{23} = 1$.
 - c. Show that

$$q_{111} = (\theta_1 - \pi_1)(\theta_2 - \pi_2)(\theta_3 - \pi_3)$$

$$q_{110} = (\theta_1 - \pi_1)(\theta_2 - \pi_2)(\theta_3 + 3\pi_3)$$

$$q_{101} = (\theta_1 - \pi_1)(\theta_2 + 3\pi_2)(\theta_3 - \pi_3)$$

$$q_{011} = (\theta_1 + 3\pi_1)(\theta_2 - \pi_2)(\theta_3 - \pi_3)$$

$$q_{000} = (\theta_1 + 3\pi_1)(\theta_2 + 3\pi_2)(\theta_3 + 3\pi_3)$$

are linear combinations of p_{123}, p_{dis}, p_{ij} (and monomials in linear combinations of the original parameters).

- d. What is the corresponding toric variety for this reparametrized model?
- 3. Let \mathcal{A} be any integer matrix with equal column sums. Let φ be the parametrization of the corresponding toric model. Write \widehat{p} for $\varphi(\widehat{\theta})$, where $\widehat{\theta}$ is the MLE for θ . Show using the method of Lagrange multipliers that if L is the likelihood function for given data u, then

$$L\cdot b = L\cdot Au = \lambda\cdot A\widehat{p}$$

Exercises on Geometric Modeling Topics

1. Show that for all choices of the control points $P_i \in \mathbf{R}^2$, the Bézier cubic curve

$$b(t) = (x(t), y(t)) = \sum_{i=0}^{3} {3 \choose i} t^{i} (1-t)^{3-i} P_{i}$$

lies on an algebraic curve defined by an equation F(x,y) = 0, where F has total degree 3 in x, y. The curve C = V(F) is automatically rational (g(C) = 0) because of this. Explain why this implies C must have a singular point (an ordinary node or cusp), possibly with coordinates in \mathbb{C} .

- 2. Some questions about toric surface patches.
 - a. Determine the Krasauskas toric blending functions for the triangle

$$\Delta_k = \text{conv}\{(0,0), (k,0), (0,k)\}$$

and show that the corresponding surface patch is a reparametrization of the Bézier triangle patch of order k.

b. Now consider the Krasauskas toric blending functions for the triangle

$$\Delta = \operatorname{conv}\{(0,0), (2,0), (1,1)\}$$

What happens on the image of a toric surface patch for this Δ at the corner (1,1)?

- c. Let P be a vertex of Δ . The "corner triangle" of P is the triangle consisting of P and the nearest two lattice points on the edges adjacent to P. One of the results of [K] is that the image of P on the toric surface patch is nonsingular if and only if the corner triangle has area 1/2 (equivalently, the two vectors from P to the nearest lattice points on the adjacent edges form a lattice basis for \mathbb{Z}^2). Prove this statement and identify the singularity if the corner triangle has area $\ell/2$ for $\ell > 1$.
- 3. Let \mathcal{P} be a set of control points in \mathbb{R}^3 . Show that the degree of the implicit equation defining an algebraic surface containing the image of $b_{\mathcal{A},w,\mathcal{P}}$ is at most

$$2 \cdot Area(conv(\mathcal{A}))$$

and equals this for generic choices of \mathcal{P} . (Hint: Use the BKK bound.)

- 4. What is the relation between the image of $b_{\mathcal{A},w,\mathcal{P}}$ and the image of $b_{\mathcal{A}',w,\mathcal{P}'}$ if $\mathcal{A}' \subset \mathcal{A}$ and \mathcal{P}' is the subset of \mathcal{P} corresponding to \mathcal{A}' ?
- 5. Let Δ be a lattice polygon in the plane, let h_m be the equations of the edges using inward normals, and let $H: \Delta \to \mathbf{R}^{\ell}$ be the map defined by the h_i The toric blending functions come from composing this H with $\chi: \mathbf{R}^{\ell} \to \mathbf{R}^{\ell}$ defined by

$$y \longmapsto (y_1^{h_1(m)} \cdots y_\ell^{h_\ell(m)} : m \in \mathcal{A})$$

The toric surface patch is the composition $\pi_P \circ \chi \circ H$, where $\pi_P : \mathbf{R}^\ell \to \mathbf{R}^3$ is the affine form of a linear projection defined by the set of control points Show that the m-component of $\chi(y)$ is just $y^a z^m$, where $a = (a_1, \ldots, a_\ell)$ comes from the constant terms, and $z = (z_i)$ where

$$z_j = \prod_{i=1}^{\ell} y_i^{\langle \mathbf{v}_i, \mathbf{e}_j \rangle}, \quad j = 1, 2$$

- 6. Show that the toric surface patch for the triangle $conv\{(0,0),(k,0),(0,k)\}$ has linear precision.
- 7. Exactly how does the set-up for Birch's Theorem relate to the algebraic moment map for Y_A ?