MSRI-UP 2009 PROJECT TOPIC IDEAS

JOHN LITTLE - COLLEGE OF THE HOLY CROSS

1. Toric CODES

A first group of project topics deals with a class of codes known as toric codes.

General Background. In [6], [7], J. Hansen introduced these codes using some
constructions from algebraic geometry (toric varieties). In somewhat more down-
to-earth language than he used, let P C R™ be an integral convex polytope (the
convex hull of some set of integer lattice points). (The book [18] as a good general
reference for the geometry of polytopes.) Suppose that PNZ™ is properly contained
in the rectangular box [0, ¢ — 2|™ (which we denote O0,_1), for some prime power g.
Then a toric code is obtained by evaluating linear combinations of the monomials
with exponent vector in PNZ™ at some subset (usually all) of the points of (IF)™.
We formalize this in the following definition.

Definition 1.1. Let Fy be a finite field with primitive element a. For f € Z™

with 0 < f; < q—2 for all i, let py = (af1,... afm) in (F;)™. For any e =

(e1,...,em) € PNZ™, let x° be the corresponding monomial and write

(pf)e — (afl)el .. (afwn)em.
The toric code Cp(Fy) over the field Fy associated to P is the linear code of block
length n = (¢ — 1)™ with generator matriz

G = ((pf)°),
where the rows are indexed by the e € PNZ™, and the columns are indexed by the
ps € (F;)™. In other words, letting L = Span{x® : e € PNZ™}, we define the
evaluation mapping

ev:L — Fq(q_l)m
9 = (9(ps) g€ F)™)
Then Cp(Fy) = ev(L). If the field is clear from the context, we will often omit

it in the notation and simply write Cp. The matrix G will be called the standard
generator matrix for the toric code.

If P is the interval [0,£—1] C R, then Cp(Fy) is the Reed-Solomon code RS(¢, q)
that we studied in the first part of the seminar. So toric codes are, in a sense,
generalizations of Reed-Solomon codes. Not all toric codes are good from the
coding theory perspective, but the class does contain some very good codes. The
connections with convex geometry (theory of polytopes) and algebraic geometry
are another reason for the interest in this topic.

Date: April 30, 2009.

2 JOHN LITTLE - COLLEGE OF THE HOLY CROSS

Some of the properties of general toric codes were studied in [4] from the 2001
SIMU program at the University of Puerto Rico at Humacao. Several of this group’s
results were later expanded by D. Ruano in [16].

One important operation on polytopes is the so-called Minkowski sum. The
Minkowski sum of two polytopes P; 4+ P> is just the set of vector sums of points in
the two polytopes:

Py + Py = {p1 +p2 | pi € Pi}.
For instance, if P; is the line segment from 0 to e; in the plane, then P = P; 4+ P is
the unit square [0, 1] x [0, 1]. A restricted but interesting class of polytopes are the
zonotopes. A zonotope is a polytope that is the Minkowski sum of a finite number
of primitive lattice segments (the generators). For instance the unit square, unit
cube, etc. are zonotopes. But there are lots of even more interesting ones too!

Project 1 — Systematic “census” of (generalized) toric codes. One of the slightly
surprising thing about toric codes is that there are so many different examples
(with drastically differing properties). Any lattice polytope P C O,_1 is “fair
game.” Still, there are some general ways one can think of reducing the complexity
of classifying the possibilities. For instance, in [13] and [16] it is shown that if
two polytopes P, Q are lattice equivalent (that is, there is some invertible integer
matrix A whose inverse is also an integer matrix and some integer vector v such
that the affine mapping T'(z) = Az + v satisfies T'(P) = (@), then the codes Cp(F,)
and Cq(F,) are monomially equivalent. This notion of equivalence for codes means
that the parameters (including the minimum distances) must be the same.

This is a very nice statement, but it is still somewhat unsatisfactory since “most”
affine mappings 1" as in the previous paragraph will take polytopes P C O,;_; to
Q=T(P) with Q ¢ O,_1.

The lattice points in a polytope P C [,_; are used as exponents in monomials
which are then evaluated at elements of (F)™ to get the entries in the codewords of
our toric code. Since z97! = 1forallx € F; (Lagrange’s theorem for finite groups),
it also makes sense to consider the exponents as vectors of integers mod ¢—1. Then
it can also be shown (you should start by doing this!) that if B € GL(m,Zq_1)-
that is, B is a matrix with entries in the integers mod ¢ — 1 which has a matrix
inverse in the ring of matrices with entries in Z,_;—then the toric codes formed
from PNZy | and from B(PNZ]' ;) are again monomially equivalent.

Now this is again slightly unsatisfactory because it is easy to find examples of
P and B where the set P NZg" | is mapped to a set of points in Zg* ; that is not
equal to () N Zg"; for any convex polytope Q. So we need to extend our point of
view to study what the article [16] calls generalized toric codes — the definition is
the same except that the monomials that are evaluated come from any subset of
Og—1, not just from the lattice points in a convex polytope.

The big advantage of this approach, though is that it lets you apply the well-
developed machinery of group actions on finite sets to study and count the orbits
under the action of GL(m,Z,_1). The main foci of this project would be to

(1) Learn (or review) the basics of enumeration of orbits under finite group
actions on finite sets (the cycle index polynomial, etc.) — see [1] for a
presentation geared toward applications in coding theory.

(2) Apply this to the enumeration of equivalence classes of (generalized) toric
codes in some relatively manageable cases, say over the field F, with ¢ =

MSRI-UP 2009 PROJECT TOPIC IDEAS 3

4,5,7,8,9,16 in the cases m = 2 or maybe m = 3, and k either relatively
small or relatively close to (¢ — 1)™. There is a symmetry involved here
coming from the pairing of a code C and its dual code C*. Moreover, the
structure of C' completely determines the structure of C+ and vice versa.
For the weight distribution of the codewords, for instance, this comes from
the MacWilliams identities — see Chapter 7 of [8].

(3) Generate and study the corresponding (generalized) toric codes. There are
some quite good codes to be found in places here — in some cases as good
or better than any codes known as of this writing (see the online tables of
Markus Grassl, [5]). See the example in the description of Project 3 below,
for instance.

Comments and Notes:

(1) There is probably enough to do here for two or more groups to work on
different parts of this.

(2) T expect this project would be pretty heavily computational after the orig-
inal phase. Magma is the software of choice for most of the operations
needed here (both for working with the group actions and for the coding
theory computations of computing minimum distances, etc.) It is possible,
but tedious, to do small computations via the online “Magma calculator.”
But that is limited to 20 seconds CPU time per computation. Need to
check whether MSRI has a license for Magma(!) It would also help to have
a really fast/powerful computer to use for some things.

(3) David Joyner has written a collection of Magma procedures for toric codes,
see his web page [10]. These might be useful for several of the other projects
as well.

Project 2 — Minkowski length of polytopes in R® and minimum distance of m = 3
toric codes. Starting with [12] and continued and expanded by the work in [17], it
has become clear that one good way to understand the minimum distance of a toric
code Cp(F,) (at least for g sufficiently large) is to study the decompositions of the
polytope P and its subpolytopes Q@ C P as Minkowski sums.

For instance, let P be the unit square written as P = P; + P, where P is the
line segment from (0,0) to (1,0) and P» is the line segment from (0,0) to (0,1).
All the words in the toric code Cp(F,) come from evaluating polynomials whose
exponent vectors are lattice points in the square, hence of the form

9(z,y) = co + 17 + c2y + czTy.
The minimum weight words in the toric code Cp(F,) come from evaluating poly-
nomials that factor as
9(z,y) = (z —a)(y —b)
so the x — a corresponds to the Minkowski summand P; and y — b corresponds to
the Minkowski summand P,. This means that the minimum distance is

d(C(Fy)) = (= 1)* = (2(¢ = 1) = 1) = (¢ - 2)*,

since reducible f as above have exactly 2(q — 1) — 1 zeroes in (F)?.

The full Minkowski length of a polytope is defined in [17] as
UP) = glcal)é{é | Q@ = Q1+ -+ Qp for some polytopes Q;}.

4 JOHN LITTLE - COLLEGE OF THE HOLY CROSS

Most of the work so far using these ideas has dealt with toric surface codes, or
equivalently the case m = 2 in the general definition. So the first topic here
would be to try to extend some of the ideas from [12] and [17] to the case m = 3
(with polytopes in R3). In particular, some good starting points are the following
questions:

(1) In any maximal Minkowski decomposition of a @) C P, the summands must
be polytopes of full Minkowski length 1 (that is, polytopes that cannot
be broken down any farther). What are the polytopes of full Minkowski
length equal to 1 in R3¢ (Ideally, we would like a full classification up
to lattice isomorphism, but nontrivial and interesting examples would be
valuable too.) The ones of dimension 1 and 2 would be the same as the
ones given in [17]. What are the strictly three-dimensional ones? What
do the corresponding toric codes look like? Are they all good codes? Note
that 3-simplices like the convex hull of 0,eq, e, e3 are examples. Are all
such polytopes simplices?

(2) Can the results of [17] be extended to give a more or less complete classifi-
cation of all maximally Minkowski-decomposable polytopes in R3?

(3) In [17], Soprunov and Soprunova mention zonotopes several times. What
can you say about minimum distance of toric codes from zonotopes?

(4) If you take a 3-dimensional zonotope with a relatively large number of
generators in “random” directions, the resulting polytope typically gets
rather round-looking (i.e. approximately spherical). Do these zonotopes
give good codes? How can you measure that?

(5) Are other three-dimensional polytopes possibly better candidates for con-
structing good toric codes?

Project 3 — Rethinking the Minkowski length. This is probably the most speculative
topic in this group. The results of [17] are really guided by the theory of lattice
polytopes. As we saw in the description of Project 1, it is perhaps more natural
from the point of view of toric codes to think of the lattice points in P C [,y C R™
as vectors in (Z,—1)™ and drop the requirement that the set is PNZ™ for a convex
polytope. In fact, most of the really good examples I know consist of subsets of the
points in PNZ™ that have “good” properties in some sense. For instance, consider
the toric code over Fg for the set S pictured with filled circles in Figure 1, at the
top of the next page. This gives a (generalized) toric code with m =2, k =7, and
d = 35 over Fs. According to [5], this is as good as the best known code for this &
and n = 49 over Fg.

Now the point is that the convex hull of these points has k = 10 lattice points.
But the minimum distance for the k¥ = 10 code is only d = 21. So, somehow, leaving
out the three monomials represented by the open circles gives a much better d. It
is possible to see what is happening here by thinking of full Minkowski length of
the convex hull (the polygon shown in Figure 1) and the points that are left when
we remove the three lattice points represented by the open circles (say if you put
the left hand point on the boundary at (0,0)). But it would be nice to have a form
of this phrased strictly in terms of subsets of (Z7)? as well.

For this project, you would try to address the following questions.

MSRI-UP 2009 PROJECT TOPIC IDEAS 5

FIGURE 1. A toric [49,7,35] code over Fg

(1) What is the correct analog of the full Minkowski length for a subset S C
(Zg-1)?, or C (Zg—1)™ in general?

(2) Can you come up with a definition that allows you to prove statements
like the main theorems from [17] or [12], but without reference to a convex
polytope?

(3) Does this depend on the arithmetic of ¢ — 17 (Note that when ¢ = 8,
q—1="7is a prime so Zy is a field too. That will not always be true but
it is sometimes true, as for ¢ = 2° = 32, ¢ = 27 = 128, and in general when
2™ — 1 is a Mersenne prime.)

(4) Assuming a good answer to the first parts is found, can you use these ideas
to design good toric codes?

Project 4 — Multivariate Vandermonde determinants and toric codes. A different
approach to studying the minimum distance of toric codes was used in the article
[13], which gives complete results for the toric codes from rectangular solids and
sitmplices of the form conv(0, ley, ..., le,) for integers /.

The key tool in [13] is the study of determinants of maximal square submatrices
of the standard generator matrix G of the toric code. The exact connection with
minimum distance is given in Proposition 2.1 of [13]. The determinants of the
matrices that arise here can be viewed as multivariable analogs of the Vandermonde
determinants you may have encountered in linear algebra (or possibly in a course
on differential equations).

An n x n one-variable Vandermonde has the form

1 1 1
aj a2 Qn
2 2 2
V(al,ag,...,an):det ay as ay,
n—1 n—1 n—1
ap ag an
for variables (or elements of a field F) ay,as,...,a,. In our discussion of BCH

codes, we have seen that

V(ar,ag,...,an) = H (a; —a;)

1<i<j<n

It follows that the Vandermonde matrix for a1, as,...,a, € F is invertible if and
only if the a; are distinct elements of F.

The multivariable Vandermonde determinants for toric codes are determined by
the exponent vectors e € PNZ™ and subsets S C (Fy)™ with |S| = [PNZ™|. Here
is a simple example. Say P is the convex hull of (0,0),(1,0),(1,1),(2,1) (P is a

6 JOHN LITTLE — COLLEGE OF THE HOLY CROSS

parallelogram in the plane). If we take a subset of (F;)? of the (special) form

S = {(CL, b)7 (C’ b)? (C’ d)a (6, d)},
then the corresponding Vandermonde determinant is

1 1 1 1
a c c e
ab ¢b cd ed
a’b b 2d €d

V(P;S) = det = +c(d —b)(a — ¢)(e — ¢)(de — ab).

(Look at this closely and try to understand the pattern.) From this we can establish
conditions ensuring that V(P; S) # 0 and then determine the minimum distance of
Cp(F,).

Not every subset S with |S| = 4 has exactly the form above. These S are the
ones where the Vandermonde V(P;S) factors in a nice way. The first step of the
work in [13] was devoted to determining suitable nice S where the Vandermonde
V(P;S) for P rectangular solids or simplices factored in a similar way. In intuitive
terms, the lesson there was that the nice S looked a lot like the sets of lattice points
in the polytope P itself(!) Then, the second step was to argue that there were
enough of the nice S to yield the desired statements about the minimum distance
for Cp(Fy).

The main goal of this project would be to try to extend the methods and results
from [13] to more general classes of polytopes than the rectangular solids and special
simplices studied there. For instance, good places to start would be to consider:

(1) more general families of simplices — e.g. the family of simplices of the form
conv(0, feq, 20es, 3le3) £ > 1 in R3.

(2) the polytope conv(ey, ez, 2e1+2e5) from [17]. Can you analyze the minimum
distance for these codes this way?

(3) zonotopes P as defined before — that is zonotopes in R™ with g > n gener-
ators.

(4) Cartesian products, Minkowski sums, etc. of polytopes of these types.

(5) other classes of polytopes? — Be aware that this method could be difficult
for completely general P, however. It is not clear a priori that any nice S
exist where V' (P;S) factors as in the example above, or that there would
be enough of them to get a good bound on the minimum distance.

Project 5 — Generalized Hamming weights of toric codes. One question that, to my
knowledge, has not been addressed at all in previous work is the problem of deter-
mining the generalized Hamming weights of toric codes. The generalized Hamming
weights of a linear [n, k,d] code C are a sequence of integers

0(C) < ds(C) < - < dk(C) < m

defined as follows. If D C C' is a subcode of dimension r, 1 < r < k, we let the
support of D, denoted supp(D), be the set of all i, 1 < i < n, such that some
d = (di,...,d,) € D has d; # 0. Stated another way, in a generator matrix for
D, the nonzero columns will correspond to the elements of supp(D). Then the rth
Hamming weight of C' is defined to be

d,(C) = min{|supp(D)| | D C C a subcode with dim(D) = r}.

MSRI-UP 2009 PROJECT TOPIC IDEAS 7

Note that in the case r = 1, a subcode of dimension 1 just consists of the multiples
of some nonzero vector. Hence d;(C) = d, the ordinary minimum distance. The
generalized Hamming weights give further information about the performance of
codes in certain applications, and form an important piece in understanding the
complete structure of code.

See section 7.10 in [8] for further properties of the generalized Hamming weights
and some examples.

Some good questions to consider here would be:

(1) First compute lots of examples with small ¢,k — as far as I know, this
is completely unexplored territory! Are there efficient ways to compute
d, (for toric codes, say, given the functionality in Magma’s coding theory
package)?

(2) How does the structure of the polytope P and its subpolytopes influence
the values of the d,(Cp(F,))? In particular, can you find bounds for the
d,(Cp(F,)) similar in spirit to the bounds from [13] or [12] and [17]?

(3) Are there families of polytopes for which some d,(Cp(F,)) attain the gen-
eralized Singleton bound

d.(C)<n—k+r
from [8], Theorem 7.10.67

2. LisT DECODING ALGORITHMS

General Background. Say C' is a Reed-Solomon code over IFy with d = 2t + 1.
In the seminar, we discussed the key equation for decoding Reed-Solomon codes,

A(z)2(2) = Q(x) mod x?,

where 3(z) is the syndrome polynomial, A(x) is the error locator polynomial, and
Q(zx) is the error evaluator polynomial. The syndrome polynomial is determined
by the error in the received word and A(x) and Q(z) are the “unknowns.” The
Berlekamp-Massey algorithm and the Euclidean algorithm (Sugiyama) decoders
work by finding a solution (A(z),2(z)) of the key equation, in which deg A(x) <t
and deg Y(z) < deg A(x) — 1. These algebraic decoding algorithms both return the
unique codeword c closest to the received word r when d(r,c) < t, but fail when
the closest codeword(s) are farther away from r, or when there is more than one
codeword at minimum distance from r.

For the past 10 years or so, since work of M. Sudan and the Ph.D. thesis of
V. Guruswami, an alternative approach to decoding for Reed-Solomon and related
codes has been receiving a lot of attention. Sudan’s work, and later extensions due
to Guruswami and Sudan deals with list decoding algorithms, in which the output
is not just a single codeword, but a list of all codewords ¢ satisfying d(c,r) < 7 for
some 7 > t. The integer 7 is called the decoding radius.

Section 7.6 of [14] has a very good discussion of the Guruswami-Sudan method
(much clearer than the original papers!) The basic outline is as follows. We use the
description of the Reed-Solomon codewords as evaluations of polynomials of degree
< k — 1 at the nonzero elements

(z1,...,2,) = (a°,...,a77?)

8 JOHN LITTLE — COLLEGE OF THE HOLY CROSS

of F, (or possibly some subset). Hence each codeword corresponds to a set of points
in F2:
q

{(zi, f(zi)) [1<i<n}

for some f(x) of degree < k — 1. Similarly, the received word can be viewed as the
set

{(zi,r) | 1 <i <n}.

The decoding algorithm proceeds in two steps:

(1) Interpolation — First, a two-variable polynomial Q(z,y) is computed
to interpolate the received word. That is, Q(z,y) is chosen to satisfy
Q(xs,m;) = 0 for all 1 < ¢ < n (with an associated multiplicity m for
all of the points). @ is determined to be minimal with respect to a certain
weighted degree ordering on monomials (that, in effect, forces the degree
in y to be as small as possible).

(2) Factorization — Under the multiplicity assumption, any polynomial Q(z,y)
as in the first step must factor as

Q(r,y) = (y —p1(x)) - (y — pr(z)) R(=)

with degp;(x) <k — 1.
(3) Once the factorization is found, each y — p;(x) corresponds to a codeword
¢; and the algorithm returns the list of codewords

{Cla"'acL}'

A number of different approaches to both of the first two steps have been devel-
oped, and the bibliography of [14] contains all of the work up to about 2006.

Project 6 — When do lists of a fized size L suffice? Begin by fixing a particular
field F, and consider Reed-Solomon codes over that field (say the “full codes” with
n = q—1). If we take a particular Reed-Solomon code and a particular multiplicity
m used to produce the interpolating polynomial Q(x,y), then the corresponding
achievable decoding radius is denoted by t,, in [14, pp. 332-333]. It is of practical
interest, of course, to determine how large lists will be necessary when we consider
all possible errors within the decoding radius for that m. So we can also study
L., = maximal degree in y of any Q(x,y) obtained for errors of weight < ¢,,. For
this project you would do the following:

(1) Begin by studying Section 7.6 of [14] carefully to learn the details of the
Guruswami-Sudan list decoding method and understand the theory of 2-
variable polynomials and monomial weight orders involved.

(2) Think about questions like this: If we decide we always want to use a certain
multiplicity m and the associated t,,, what are the ranges of k for which
lists of size L always suffice? For instance, for m = 1, and decoding radius
t1, which dimensions k give codes that can be decoded with lists of size (at
most) L =2 or L = 3, etc.? (The answer to this is known, but you should
try to figure it out for yourself before going to sources to find an answer.)

(3) On the other hand, if we decide we can only use lists of size < L for some
fixed L, what is the largest decoding radius that can be achieved (for a
given k first, then as a function of k)7

MSRI-UP 2009 PROJECT TOPIC IDEAS 9

(4) Fixing n and the field F, again, given k, what multiplicity m = m(k) first
attains the maximum list decoding radius n — K, (using notation from
[14]) for that k? For instance, if ¢ = 32, n = 31, then m(k) as a function
of k is plotted in Figure 2. Write some Maple procedures to generate the

FIGURE 2. m(k) as a function of k for Reed-Solomon codes over Fgs

analogous graphs for any n. Try them to reproduce this graph for n = 31
and generate some data to look at for other n (be sure to include cases with
n < q—1 over Fy). Is there always only one k for which m(k) reaches its
maximum? If so, how does that k depend on ¢, n?

(5) You might also think of implementing the algorithms presented in [14] in
Maple to automate working out larger examples if you want to explore the
actual Guruswami-Sudan decoding process.

Project 7 — A new method for the Interpolation step. In the recent article [11], Lee
and O’Sullivan have proposed a way to think about the Interpolation step of the
Guruswami-Sudan list decoding algorithm in terms of computing a Grobner basis
for a certain module of a polynomial ring with respect to a particular monomial
order. The method they use, though, does not make use of the fact that they
already know a Grobner basis of the module with respect to a different monomial
order. In a situation like this, there is a basis conversion method called the FGLM
algorithm that could be used instead.

If one wanted to make full use of the fact that the original set of generators for
the module I, ,,; are actually also a Grobner basis, but with respect to a different
order on F[z,y]; (the order induced from the lexicographic order on F|x,y] with
y > x). On Example 9 from [11], for instance, it seems looks that an “optimized”
FGLM (making use of the shape of the lex ”footprint”) would need very few actual
computations to find the minimal element Q(z,y).

The idea is to list the monomials in increasing >, _1 (here >3) order, compute the
remainders (normal forms) with respect to the original lex Grobner basis. We can
stop the first time we hit a linear dependence between the remainders — that will give
the >o-minimal element of the module. Now in this example, dimp(k[z, y]3/M) =
18, with a "footprint” basis

{]‘7m’ x27 cte 7x11?y7 xy’x2y7 M 7x5y}

10 JOHN LITTLE — COLLEGE OF THE HOLY CROSS

Note the original lex basis {go, g1, g2, g3} is not reduced because of the terms in g3
divisible by leading terms of g; and gs. To save some work later, we could start by
replacing g3 by g3 — (52* + -+)ga, then reduce the result with g; and go, so the
new g3 has form g3 = y> + -- -, where the --- represent terms in footprint — three
polynomial divisions in F[z].

Now we start the FGLM procedure, listing the monomials in increasing >9 order
starting from 1. For the first batch,

{1"T7x2ay7 133,35%9547302?4}

no remainders are necessary since these are in the footprint already. The next one,
y? is the leading term of the module element go, but all the other terms are in the
footprint, and this is clearly independent of the ones we already know because of
the 2% (and the x%y). Then we continue:

e 2% (in footprint and different >, leading term from any remainder we have
seen so far, so OK)

o 23y (ditto)

e 272 (ditto — 2° and 2%y terms)

e 33 (use modified g3, get a 2! term so still can see linear dependence without
a lot of calculation)

e 27 (ditto — leading term 27 is new)

e 2°y (here you do need to check that this and previous remainders are lin-
early independent, but they are essentially taking an echelon form matrix
where most rows have only one non-zero entry, adding one more row and
reducing it.)

e 23y? (the 19th monomial considered, and you get the expected linear com-
bination yielding the correct Q(x,y)).

7

In any case, the nice thing that happened here was that so many of the monomials
you need to process are already in the lex footprint, so you don’t need to do a lot
of computations.

(1) This project is slightly different from some of the others in that it draws on
a lot of background we have not discussed at all in the seminar. However,
Grobner bases are a quite important algebraic tool in contemporary coding
theory, so learning about this extra topic would definitely be worthwhile if
you wanted to continue to study this field. Good sources are [2, Chapter
2] and [3, Chapter 2].

(2) The project would be to first learn the relevant material about Grébner
bases and the FGLM basis conversion algorithm to understand the outline
computation above.

(3) Then, study whether this proposed different method is really an improve-
ment over the method proposed in [11].

(4) Work out some additional examples and compare the amount of computa-
tion needed for each method.

(5) Try to prove a general pattern!

REFERENCES

[1] P. Cameron, Polynomial aspects of codes matroids and permutation groups, notes available
online at http://www.maths.qmw.ac.uk/“pjc/csgnotes/cmpgpoly.pdf

2]
(3]
(4]
(5]
(6]
(7]
(8]
9

[10]
(11]

(12]
(13]

[14]
(15]

(16]
(17]

18]

MSRI-UP 2009 PROJECT TOPIC IDEAS 11

D. Cox, J. Little, D. O’Shea, Ideals, Varieties, and Algorithms, 3rd edition, Springer, New
York, 2008.

D. Cox, J. Little, D. O’Shea, Using Algebraic Geometry, 2nd edition, Springer, New York,
2006.

V. Diaz, C. Guevara, M. Vath, Codes from n-Dimensional Polyhedra and n-Dimensional
Cyclic Codes, Proceedings of SIMU summer institute, 2001.

M. Grassl, Code Tables: Bounds on the parameters of wvarious types of codes,
http://www.codetables.de.

J. Hansen, Toric surfaces and error-correcting codes, in Coding theory, cryptography and
related areas (Guanajuato, 1998), 132-142, Springer, Berlin, 2000.

J. Hansen, Toric varieties Hirzebruch surfaces and error-correcting codes, Appl. Algebra
Engrg. Comm. Comput. 13 (2002), 289-300.

W. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University
Press, Cambridge, 2003.

D. Joyner, Toric codes over finite fields, Appl. Algebra Engrg. Comm. Comput. 15 (2004),
63-79.

D. Joyner, http://wuw.usna.edu/Users/math/wdj/magma/magmastuff.html.

K. Lee, M. O’Sullivan, List decoding of Reed-Solomon codes from a Grébner basis perspective,
J. Symb. Comp. 43 (2008), 645—658.

J. Little, H. Schenck, Toric surface codes and Minkowski sums, SIAM J. Discrete Math 20
(2006), 999-1014.

J. Little, R. Schwarz On toric codes and multivariate Vandermonde matrices, Appl. Alg.
Engrg. Comm. Comput. 18 (2007), 349-367.

T. Moon, Error Correction Coding, Wiley-Interscience, Hoboken, 2005.

D. Ruano, On the parameters of r-dimensional toric codes, Finite Fields Appl. 13 (2007),
962-976.

D. Ruano, On the structure of generalized toric codes, to appear in J. Symb, Comp,, arXiv:
cs.IT/0611010.

I. Soprunov, J. Soprunov, Toric surface codes and Minkowski length of polygons, STAM J.
Discrete Math 23 (2009), 384-400.

G. Ziegler, Lectures on Polytopes, Springer Verlag, Berlin, 1995.

