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Introduction

The Reed-Solomon codes are cyclic codes over the alphabet
F2r with many good properties:
• Best possible d for their n and k – indeed, they are codes

achieving the Singleton bound: d = n − k + 1,
• Good encoding method (via polynomial division – you will

see this in the computer lab)
• Efficient decoding methods (Berlekamp-Massey, Euclidean

Algorithm decoders)
• As a result, they are widely used in applications
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Cyclic codes over F2r

Almost all of the facts about binary cyclic codes we saw last
week extend to the case of cyclic codes over the alphabet F2r :
• (In polynomial form), the codewords are all multiples of a

generator polynomial g(x) ∈ F2r [x ] (a factor of xn + 1)
• Generator and parity-check matrices can be formed as

before
• The roots of the generator polynomial now determine

“honest” parity-check matrices over the field F2r .
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An example

Construct F23 = F2[x ]/〈x3 + x + 1〉, so α = x is a primitive
element.
• Let n = 7, so

x7 + 1 =
∏

β 6=0∈F23

(x + β).

• We can take any g(x) dividing this to get a generator
polynomial for a cyclic code C with n = 7.

• For instance, take

g(x) = (x + α)(x + α2)(x + α3)

= x3 + α6x2 + αx + α6
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Example, continued

From the expanded form of the generator polynomial, we get

G =


α6 α α6 1 0 0 0
0 α6 α α6 1 0 0
0 0 α6 α α6 1 0
0 0 0 α6 α α6 1


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Example, continued

Since every codeword must have roots α, α2, α3, we get a
parity-check matrix: 

1 1 1
α α2 α3

α2 (α2)2 (α3)2

...
...

...
α6 (α2)6 (α3)6


The code has n = 7, k = 4 over F23 .
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Reed-Solomon codes

Our example code is in fact a first example of a Reed-Solomon
code.

Definition
Let α be a primitive element for the field F2r . A Reed-Solomon
code RS(2r , δ) is a cyclic code of length n = 2r − 1 over F2r

whose generator polynomial has the form

g(x) = (x + αm+1)(x + αm+2) · · · (x + αm+δ−1)

for some m.
(Note – the roots of g(x) are a consecutive string of δ − 1
powers of α.)
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History

• RS codes are named after their inventors (discoverers?),
Irving Reed and Gustave Solomon.

• The codes were invented in 1960, when Reed and
Solomon worked at MIT’s Lincoln Labs in Massachusetts.

• Reed, who is still living, earned his Ph.D. at Cal Tech and
later taught at USC before retiring.

• Solomon, who died in 1996, earned his Ph.D. at MIT, and
consulted for many years at JPL in Pasadena.
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Minimum distance of RS(2r , δ).

• The argument with Vandermonde determinants that we
used to estimate d for the BCH codes also applies here.

• From the form of H for Reed-Solomon code, H has δ − 1
columns.

• Any set of δ − 1 rows of H is linearly independent over F2r ,
since (after factoring out common factors in the rows) the
(δ − 1)× (δ − 1) submatrix is a Vandermonde matrix.

• It follows that d = δ.
• Note that n = 2r − 1 and k = 2r − δ. Hence

d = δ = n − k + 1. (Singleton bound is reached!)
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A comment

• The RS(2r , δ) codes all have n = 2r − 1 exactly.
• This is somewhat restrictive for use in applications.
• We can also define shortened RS codes of length any

n < 2r − 1.
• Idea – pick any s locations in the words (⇔ a set of s

nonzero elements of F2r ), take the subcode of RS(2r , δ)
with zeroes in those locations, and delete the zeroes.

• Leaves a code C(s) with n = 2r − 1− s, k = 2r − δ − s,
d = δ. These codes meet the Singleton bound too!
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An alternate construction of RS(2r , δ)

• The construction of RS(2r , δ) from a particular form of
generator polynomial is not the original way that Irving
Reed and Gustave Solomon defined these codes.

• We will study that original construction next, because it
gives another very nice way to understand d (maybe even
clearer as motivation)

• However, it is slightly tricky, since it uses polynomials in
F2r [x ] in a different way from the way we have associated
polynomials to codewords.

• This alternate construction is closely related to one of the
groups of research project topics, though, so it will be
valuable to understand this in detail(!)
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The evaluation mapping

• Let us start with the desired dimension k < 2r .
• Let Lk = Span{1, t , t2, . . . , tk−1} ⊂ F2r [t ].
• We can define a code of dimension k by evaluating

polynomials f ∈ Lk to get the codeword entries:

ev : Lk −→ F2r−1
2r

f 7−→ (f (1), f (α), f (α2), . . . , f (α2r−2))

(where α is a primitive element).
• The image of ev is a linear code of dimension k – we claim

that it is in fact an RS code(!)
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Why is this an RS code?

• We must show that if we take the polynomial form of these
codewords, then all of them have some consecutive string
of powers of α as roots.

• This is easiest to see for the codewords ev(t i) for
i = 0, . . . , k − 1.

• The polynomial form of ev(t i) is

1 + αix + α2ix2 + · · ·+ α(2r−2)ix2r−2,

• which is the same as p(αix) for p(v) = 1 + v + · · ·+ v2r−2.
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Why is this an RS code?, continued

• Note that (1 + v)p(v) = 1 + v2r−1.
• It follows that the roots of p(v) are all the nonzero β 6= 1 in

F2r .
• Hence the roots of p(αix) = 0 are all the nonzero

x 6= α−i = α2r−1−i in F2r .
• Letting i = 0,1, . . . , k − 1 we see that the common roots of

all the codewords of our code are

α, α2, . . . , α2r−k−1

• In other words, ev(Lk ) is the same as the RS(2r ,2r − k)
code we saw before (with m = 0).
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d ⇔ a basic fact for polynomials

• With this alternate way to understand where the RS
codewords come from, note that our determination of d
just comes down to asking, how many zeroes can a
nonzero polynomial in Lk−1 have?

• The answer is clear – no more than k − 1 roots!
• Proof: By division algorithm, β is a root of f (x) if and only

if f (x) = (x − β)q(x) with deg(q(x)) = deg(f (x))− 1. We
then continue with q(x) to see that f (x) has at most k − 1
roots.

• Moreover, some polynomials of degree k − 1 have k − 1
distinct roots.

• So the nonzero words of minimum weight in ev(Lk−1) have
weight d = 2r − k = δ from before.

• Once again, d = n − k + 1!
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A final example

To tie everything together, let us give the two constructions of
an RS(24,7) code.
• The generator polynomial for the RS code with m = 0 is

g(x) = (x + α)(x + α2) · · · (x + α6) (deg(g) = 6)
• Since n = 24 − 1 = 15, this means that k = 9.
• So RS(24,7) can also be constructed as ev(L9) for

L9 = {1, t , t2, . . . , t8} ⊂ F24 [t ].
• Gives two different ways to produce generator matrices,

either the “cyclic” generator matrix from g(x), or the matrix
whose i th row is

ev(t i) = (1, αi , α2i , . . . , α(2r−2)i)

(i = 0, . . . ,8).
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Introduction

We will now develop an efficient decoding method for the
RS(2r , δ) codes. (Note – our method has much of the same
algebraic background as the Berlekamp-Massey algorithm
presented in the text, but it uses a different method to produce
solutions of the key equation for decoding.)

Our method will rely on the (generalized) Euclidean algorithm
for polynomials, an extension of the algorithm we discussed in
Week 1 for finding gcd(f (x),g(x)).
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Background – the generalized Euclidean algorithm

• Recall that we have seen that if d(x) = gcd(f (x),g(x)),
then there are A(x),B(x) such that
d(x) = A(x)f (x) + B(x)g(x).

• There is a version of the Euclidean Algorithm that
computes d(x) together with the A(x),B(x).

• We first introduce the notation f (x) = r−1(x) and
g(x) = r0(x) to give a uniform form for the steps in the
successive divisions.

• So every line of the computation of the remainder
sequence can be written as

rk−1(x) = qk (x)rk (x) + rk+1(x)

for k = 0,1,2, . . ..
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Generalized Euclid, continued

Input: nonzero f(x), g(x)
Output: d(x), A(x), B(x)
r[-1] := f; r[0] := g;
A[-1] := 1; A[0] := 0;
B[-1] := 0; B[0] := 1;
k:=0;
while r[k] <> 0 do

r[k+1] := rem(r[k-1],r[k],x);
q[k] := quo(r[k-1],r[k],x);
A[k+1] := A[k-1] - q[k] A[k];
B[k+1] := B[k-1] - q[k] B[k];
k := k+1

end do;
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Note: The polynomials A(x),B(x), and d(x) are the final values
A[k ], B[k ], and r [k ], respectively.

There is a nice tabular format for organizing and carrying out
these calculations, shown in the following example.
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Let f (x) = x6 + x5 + x3 + x2 and g(x) = x6 + x4 + x + 1 in F2[x ].

k r [k ] q[k ] A[k ] B[k ]

−1 x6 + x5 + x3 + x2 1 0
0 x6 + x4 + x + 1 1 0 1
1 x5 + x4 + x3 + x2 + x + 1 x + 1 1 1
2 x4 + x x + 1 x + 1 x
3 x3 + 1 x x2 x2 + x + 1

Then, (x2)f (x) + (x2 + x + 1)g(x) = x3 + 1 as claimed.
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Setup for decoding

• Assume d = 2t + 1. Then any t or fewer symbol-level
errors in a received word are correctable.

• Let u =
∑2r−2

j=0 ujx j be a codeword of C.
• In F2r [x ], u is divisible by the generator polynomial

g = (x + α)(x + α2) · · · (x + αd−1).
• Suppose that u is transmitted, but some errors are

introduced, so that the received word is r = u + e for some
e =

∑
i∈L eix i .

• L is called the set of error locations, and we assume
|L| ≤ t . The coefficients ei are known as the error values.
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The decoding problem

Decoding Problem: Given the received word r , determine the
set of error locations L and the error values ei for the error
polynomial e with t or fewer nonzero terms (if such a
polynomial exists).

Once we find e, the decoding function will return E−1(r − e).
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The error syndromes

• The values of the polynomial form of the received word at
α, . . . , αd−1 are known as the error syndromes.

• If r(αj) = 0 for all j = 1, . . . ,d − 1, then r is divisible by g,
and assuming t or fewer errors have occurred, r must be
the codeword we intended to send.

• Note that for j = 1, . . . ,d − 1,

sj = r(αj) = u(αj) + e(αj) = e(αj),

since u is a multiple of g. Hence the sj are the values of
the error polynomial for j = 1, . . . ,d − 1.
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The syndrome polynomial and series

• The syndromes may be used as the coefficients in a
polynomial

Σ(x) =
d−1∑
j=1

sjx j−1,

called the syndrome polynomial for the received word r .
• The degree of Σ is d − 2 or less.
• By extending the definition of sj = e(αj) to all exponents j

we can also consider the formal power series

Σ̂(x) =
∞∑

j=1

sjx j−1.
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Preparation for key equation

• Suppose we knew the error polynomial e. Then,
sj =

∑
i∈L ei(α

j)i =
∑

i∈L ei(α
i)j .

• By algebraic manipulation, Σ̂(x) can be written as

Σ̂(x) =
∞∑

j=1

sjx j−1 =
∑
i∈L

ei

 ∞∑
j=1

(αi)jx j−1


=
∑
i∈L

eiα
i

(1− αix)

=
Ω(x)

Λ(x)
,

where Λ(x) =
∏

i∈L(1− αix) and
Ω(x) =

∑
i∈L eiα

i ∏
j∈L,j 6=i(1− αjx).
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Error locator and error evaluator

• The roots of Λ are precisely the α−i for i ∈ L.
• Since the error locations can be determined easily from

these roots, Λ is called the error locator polynomial.
• deg Ω ≤ deg Λ− 1.
• In addition, if i ∈ L,

Ω(α−i) = eiα
i
∏

j∈L,j 6=i

(1− αjα−i) 6= 0.

• Hence Ω and Λ must be relatively prime.
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The “tail” of the series

• Similarly, if we consider the “tail” of the series Σ̂,

Σ̂(x)− Σ(x) =
∞∑

j=d

(∑
i∈L

ei(α
i)j

)
x j−1

= xd−1 · Γ(x)

Λ(x)
,

where Γ(x) =
∑

i∈L eiα
id ∏

j∈L;j 6=i(1− αjx).

• The degree of Γ is also at most deg Λ− 1.
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The key equation

Combining the above, and writing d − 1 = 2t we obtain the
relation

Ω(x) = Λ(x)Σ(x) + x2t Γ(x),

called the key equation for decoding.

Decoding will be accomplished if we can solve the key equation
for the unknowns Λ(x), Ω(x), Γ(x) using the known information
from Σ(x), because of the following theorem.
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Decoding theorem

Theorem
Suppose that t or fewer errors occur in the received word r , and
let Σ be the corresponding syndrome polynomial. Up to a
constant multiple, there exists a unique solution (Ω,Λ, Γ) of the
key equation that satisfies the degree conditions

deg Λ ≤ t
deg Ω < deg Λ,

and for which Ω and Λ are relatively prime.
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The decoding process, given a solution of the key
equation

• If we can solve the key equation for Λ(x),Ω(x) (Γ(x) is not
actually used from this point on), then we solve Λ(x) = 0 to
find the error locations. (This can be done by the
“brute-force” method of searching through all nonzero
elements of the field to find the roots.)

• Then the error values ei can be determined from the
equation Ω(x) =

∑
i∈L eiα

i ∏
j∈L,j 6=i(1− αjx). (Called the

“Forney formula.”)
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Solving the key equation

The process of solving the key equation consists of exactly the
same steps as the generalized Euclidean Algorithm for the
polynomials f (x) = x2t and g(x) = Σ(x), except that we stop
the first time we find a remainder rk with deg rk < t (this
corresponds to an equation

Γ(x)x2t + Λ(x)Σ(x) = Ω(x)

with deg Ω(x) < t).

There is a Maple implementation of this procedure in the class
CTP.map file.
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A decoding example

• Use the RS(8,5) code (t = 2), with F8 constructed using
h(x) = x3 + x + 1 (α a root of this).

• The codeword u = ev(1) = (1,1,1,1,1,1,1) is sent, but
r = (1, α, 1,1,1,1, α2 + 1).

• The first step is to compute the syndromes and the
corresponding syndrome polynomial Σ(x).

• For instance,

s1 = r(α) = 1 + α2 + α2 + α3 + α4 + α5 + α6(α2 + 1)

= 1 + (α + 1) + (α2 + α) + (α2 + α + 1) + (α2 + α + 1)

= α2
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Decoding example, continued

• Similarly, s2 = α4, s3 = 0, s4 = α4,
• Hence Σ(x) = α2 + α4x + α4x3.
• We now begin the Euclidean algorithm to find the gcd of

x2t = x4 and Σ(x), keeping track of the remainders rk , and
Ak ,Bk .

• In the first division: x4 = (α3x) · Σ(x) + (x2 + α5x), so
q0 = α3x and r1 = x2 + α5x . Hence A1 = A−1 − q0A0 = 1
and B1 = B−1 − q0B0 = α3x .
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Decoding example, continued

• Continue in the same way (only one more step is needed
in the while loop in in this small example).

• We obtain the results collected in the table on the next
slide.
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Euclidean algorithm results

k rk qk Ak Bk
−1 x4 1 0

0 α4x3 + α4x + α2 α3x 0 1
1 x2 + α5x α4x + α2 1 α3x
2 α5x + α2 α4x + α2 x2 + α5x + 1
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The error locations

• We stop here since deg(r2) = 1 < 2 = t . The next step is
to find the roots of

B2(x) = Λ(x) = x2 + α5x + 1 = 0.

• This can be done either by exhaustive search, or by
factoring:

x2 + α5x + 1 = (1 + αx)(1 + α6x),

so the roots are x = α6, α.
• But by the definition of Λ(x), the locations of the errors are

found from the inverses: α = α−6 and α6 = α−1, so the
errors occurred in locations 1 and 6.
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The error values

• Finally we use the Forney Formula to determine the error
values e1 and e6.

• With x = α = α−6,

Ω(α−1) = αe1χ1(α6) = αe1(1− α5) = α5e1.

• Since Ω(x) = α5x + α2, it follows that Ω(α−1) = α, and so
e1 = α3.

• Similarly, e6 = α2.
• Hence e(x) = α3x + α2x6 and

r(x) + e(x) = 1 + x + x2 + · · ·+ x6, which finishes the
decoding.

Reed-Solomon Codes The Euclidean Algorithm (Sugiyama) Decoder

Notes


	Reed-Solomon Codes
	The Euclidean Algorithm (Sugiyama) Decoder

