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A bit of history

• Beginning of coding theory as a mathematical and
engineering subject came with a paper “A Mathematical
Theory of Communication” by Claude Shannon (1948).

• Shannon lived from 1916 t0 2001, and spent most of his
working career at Bell Labs and MIT.

• He also made fundamental contributions to cryptography
and the design of computer circuitry in earlier work coming
from his Ph.D. thesis.

• Other interests – inventing gadgets, juggling, unicycles,
chess(!)
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Shannon’s conceptual communication set-up

message noise

↓ ↓
encoder → trans. → channel → rec. → decoder

↓
message
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Examples

This is a very general framework, incorporating examples such
as
• communication with deep space exploration craft (Mariner,

Voyager, etc. – the most important early application)
• storing/retrieving information in computer memory
• storing/retrieving audio information (CDs)
• storing/rerieving video information (DVD and Blu-Ray

disks)
• wireless communication

A main goal of coding theory is the design of coding schemes
that achieve error control : ability to detect and correct errors in
received messages.
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Error correction

Bienvenqdos a Cnlifornix, MSRI-UP sumyer 2009 studenxs!
• If you can read this message, then you’re doing error

correction!
• In all human languages like Spanish or English, words are

usually “far enough apart” that even if some of a message
is corrupted, it may still be intelligible

• because there are only a few legal words that are “close” to
what is contained in the received message. (This is why
autocorrection by spell-checking software is possible too!)

• In the systems used for other types of communication,
similar robustness in the presence of noise is a very
desirable feature that can be “designed in.”
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Mathematical setting

• Messages
• are divided into “words” or blocks of a fixed length, k ,
• use symbols from a finite alphabet A with some number q

of symbols

• Simplest case (also best adapted to electronic hardware)
is an alphabet with two symbols: A = {0, 1}, identified with
the finite field F2 (addition and multiplication modulo 2 – so
1 + 1 = 0), but we will see others later also.

• Usually, all strings or k -tuples in Fk
2 are considered as

possible words that can appear in a message.
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Encoding and decoding

To correct errors, redundancy must included in the encoded
message. One way: encoded message consists of strings or
n-tuples of fixed length n > k over the same alphabet. Then
encoding and decoding are functions:

E : Fk
2 → Fn

2

and
D : Fn

2 → Fk
2

where E is 1-1, and D ◦ E = I on Fk
2.

(D might also take a “FAIL” value on some words in the
complement of Im(E) containing too many errors to be
decodable.)
We call C = Im(E) the set of codewords, or the code. Any C of
this form is called a block code of length n.
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Errors

• Channel errors replace a codeword x by a received word
x ′ 6= x .

• For A = F2 with sum operation satisfying the usual
algebraic rules (commutativity, associativity, existence of a
0 element and additive inverses), then x ′ = x + e, where
e ∈ Fn

2 is the error vector.
• The weight

wt(e) = |{i | ei 6= 0}|

determines how many entries of x are corrupted.
• Example: wt(11000101) = 4.
• Decoding is the same as determining e (somehow), then

subtracting it off to recover x .
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Hamming distance

For errors to be correctable, codewords must be “separated.”

Definition (Hamming Distance)
Let x , y ∈ Fn

2. Then

d(x , y) = |{i ∈ {1, . . . , n} : xi 6= yi}|
= wt(x − y).

Example: d(11000111, 10100101) = 3
Fact: d(x , y) is a metric or distance function (on the finite set
Fn

2). In particular, the triangle inequality :

d(x , y) ≤ d(x , z) + d(z, y)

holds for all x , y , z ∈ Fn
2 (discussion today).
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Error-Correcting Capacity

The Hamming distance measures a code’s error detecting and
error correcting capacity.

Theorem
Let C be a code in Fn

2.
1. If d(u, v) ≥ s + 1 for all distinct u, v ∈ C, then all error

vectors of weight s less can be detected.
2. If d(u, v) ≥ 2t + 1 for all distinct u, v ∈ C, all error vectors

of weight t or less will be corrected by the
“nearest-neighbor” decoding function:

D(x) = E−1(c ∈ C : d(x , c) is minimal).
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The proof

Proof: We write

B(u, s) = {y ∈ Fn
2 : d(u, y) ≤ s},

called the closed ball with center u, radius s for the Hamming
distance.

B(u, s)

&%
'$s -s

u
v s

Part 1: If d(u, v) ≥ s + 1 for all u 6= v in C, then changing s
entries in a codeword never produces another codeword.
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The proof, continued

B(u, t)

&%
'$s -t

u
s

&%
'$
� t

v B(v , t)

Part 2: Assume d(u, v) ≥ 2t + 1 for all u 6= v ∈ C. Then B(u, t)
and B(v , t) must be disjoint. (If y ∈ B(u, t) ∩ B(v , t), then

d(u, v) ≤ d(u, y) + d(y , v) ≤ 2t

by the triangle inequality. Contradiction.)
Shows: If u is sent and wt(e) ≤ t , then u + e is still closer to u
than any other codeword, and nearest neighbor decoding will
correct the error!
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Minimum distance

The theorem shows that the minimum distance defined below is
a very important parameter of codes.

Definition
Let C be a code in Fn

2. The minimum distance of C, denoted d
or d(C), is

d = min
u 6=v∈C

d(u, v).

(That is, d gives the smallest separation between any two
distinct codewords. The larger d is, the more widely separated
all pairs of distinct codewords are.)
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Comments

• For a general code C (where the set of codewords has no
“extra structure”), to find d , it is necessary to compute
Hamming distances between all pairs of distinct
codewords.

• For instance, if C = {111001, 101010, 000110}, then
d(111001, 101010) = 3, d(111001, 000110) = 6,
d(101010, 000110) = 3, so d(C) = 3.

• If there are N codewords, this means
(N

2

)
= N(N−1)

2
comparisons.
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The theorem, reconsidered

• Can we always tell when errors occur?
• Clearly no, since the error could turn a codeword into a

different codeword if it has large enough weight.
• If we use a code with d = 2t + 1, what happens if an error

e with wt(e) > t is introduced by the channel?
• Nearest-neighbor decoding can fail and produce an

incorrect decoding!
• Reason – the received word u + e could be closer to a

different v ∈ C than to u: d(u + e, v) < d(u + e, u)(!)
• Are these possiblities likely to cause problems in our

communications system?
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More on channels

To answer a question like this, we really need to know more
about the characteristics of the communications channel we
are working with. Perhaps the simplest situation to understand
and analyze is the class of binary symmetric channels, or BSC.

Assumptions:
• errors do not depend on the entries of the codeword

transmitted
• bit-level errors are random – probability that a bit is sent

correctly is some p, 0 < p < 1, (so error probability is
1− p).

• bit level errors are independent of each other (knowing one
bit was incorrect gives no information about others).
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Schematic picture

The probabilities of a message bit on left being received as bit
on right.
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Note: “symmetric” refers to the symmetry between probabilities
for 0s and 1s.
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An example

Assume we have a BSC
• with p = .995 and 1− p = .005 (that is: out of every

103 = 1000 bits transmitted, we expect 5 to be incorrect).
• capable of transmitting 106 bits per minute.

Say we want to send messages over the alphabet F2 divided
into words of length 4.
Let’s study three different scenarios.
• no encoding at all
• encoding with a “check bit”
• encoding each word of length 4 to a codeword of length 7,

using a code with d = 3.
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Scenario 1

With no error-control coding:
• Can send 106/4 = 250, 000 words each minute
• Expect about 5000 bit errors each minute
• Could have about 5000 (that is 2%) of the words incorrect

(fewer, if errors “bunch up” in one word)
• In effect, we are using a code consisting of all of F4

2, so
d = 1.

• By the theorem, we cannot detect or correct any of the
errors (since error will always take a codeword to another
codeword!)
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Scenario 2

With a “check bit”
• Say we add a bit to each word so that the number of 1’s is

always even (so for instance 1100→ 11000 and
1011→ 10111).

• The code C consists of the 16 words of length 5 with an
even number of 1’s. Have d(C) = 2.

• By the theorem, we can detect any single bit error in a
received word, but we cannot necessarily correct it.

• Can send 106/5 = 200, 000 codewords each minute
• Still expect about 5000 bit errors per minute, so as many

as 5000 words could contain errors.
• Question: How many undetected errors could there be?
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Scenario 2, continued

• Our question comes down to asking: what is the probability
of an even number of errors in a received word?

• We have (by independence assumption on the bit errors!)

P(2 bit errors) =

(
5
2

)
(.995)3(.005)2 .

= .000246

P(4 bit errors) =

(
5
4

)
(.995)1(.005)4 .

= 3.11× 10−9

• Since the probability of 4 bit errors is so much smaller, we
will neglect it.

• Expect about (200, 000)(.000246)
.
= 49 words to have

undetectable errors each minute.
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Scenario 3

Assume we can map words of length 4 to 16 codewords of
length n = 7 and code has d = 3. (We will see such a code
later in the week!)
• By the theorem, any 2 bit errors in a received word can be

detected, and any single bit error in a received word can be
corrected by nearest-neighbor decoding.

• Can send 106/7 .
= 142, 857 codewords per minute

• Now in the length 7 received words,

P(2 bit errors) =

(
7
2

)
(.995)5(.005)2 .

= .000512

P(3 bit errors) =

(
7
3

)
(.995)4(.005)3 .

= .00000429

and the probability of more bit errors is negligibly small.
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Scenario 3, continued

• So we expect about (142857)(.00000429)
.
= .613

undetectable errors per minute
• We expect about (142857)(.000516)

.
= 74 uncorrectable

errors per minute.
• But by the previous, almost all of these would be

detectable, so the receiver could ask for retransmission!
• Also, recall that in Scenario 2 no error correction was

possible.
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Conclusions

• By incorporating more sophisticated coding, it is definitely
possible to reduce the rate at which “unrecoverable” errors
occur.

• But the decision which scenario to use in a case like this
would be made by comparing the tradeoffs between
efficiency (message words transmitted per minute) and
additional error detection and correction capability.

• Even though it draws heavily on topics in pure
mathematics (as we will see), coding practice is definitely
an engineering discipline (EE, computer engineering)!
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Codes with “extra structure”

Codes where the set of codewords is an arbitrary subset of Fn
2

are somewhat awkward to work with.
• (Usually) need the complete list of codewords to specify

the code
• Computationally difficult to determine parameters like d
• No general algebraic encoding or decoding procedures

known
• So, most codes used in practice have some extra algebraic

structure
• Today, we will introduce linear codes, where the set of

codewords is a vector subspace of Fn
2
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Linear algebra over a general field

• In your study of linear algebra so far, you may have only
dealt with Rn, vector spaces over the field R, and so forth.

• Even though the algebra of F2 with +, · mod 2 is very
simple, most of the good properties of R hold for F2 as
well:

1. Addition is associative and commutative, there is a 0, each
element has an additive inverse

2. Multiplication is associative and commutative, there is a 1,
each nonzero element has a multiplicative inverse

3. Multiplication distributes over addition

• Any set F with +, · operations satisfying these properties is
called a field.

• Hence F2 is a field. More generally, Fp is a field for any
prime p.
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Linear algebra over a general field, continued

The field axioms are precisely the usual properties needed for
the scalars associated to a vector space V , and we can define
vector spaces over any field F.
Example. Let F = F2, and let V = Fn

2. We have a vector sum
operation on V defined by component-wise addition mod 2, e.g.

110011 + 010110 = 100101.

We also have a scalar multiplication by the scalars in F2:

0 · (x1, . . . , xn) = (0, . . . , 0) 1 · (x1, . . . , xn) = (x1, . . . , xn).

This makes Fn
2 a vector space over F2.
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Linear algebra over a general field, continued

Most of the basic constructions from linear algebra carry over to
vector spaces like Fn

2.
• A linear combination of vectors has the form

c1x1 + · · ·+ cnxn, where ci ∈ F2, xi ∈ Fn
2.

• A subset W of Fn
2 is a vector subspace of Fn

2 if W is closed
under all linear combinations.

• The span of a set S ⊂ Fn
2, denoted 〈S〉, is the set of all

linear combinations of vectors in S – a subspace of Fn
2.

• A set S is said to be linearly independent if the only linear
combination c1x1 + · · ·+ cnxn of vectors xi ∈ S that adds
up to the zero vector is the combination with ci = 0 for all i .

• Every vector subspace W in Fn
2 has a basis – a set S ⊂W

such that 〈S〉 = W and S is linearly independent.
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Linear algebra over a general field, continued

• All bases for the same subspace W have the same
number of elements.

• Hence it makes sense to define the dimension of W as
dim(W ) = |S|, where S is any basis for W . We have
0 ≤ dim(W ) ≤ n for all W in Fn

2.
• The set of solutions of any homogeneous system of linear

equations in n variables with coefficients in F2 is a
subspace of Fn

2.
• The usual techniques of row operations on matrices and

reduction to row-reduced echelon form work in the same
way as over the field R.
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Linear codes

Definition
A binary linear code of blocklength n is a vector subspace of
Fn

2.

Definition
The parameters of a binary linear code are [n, k , d ], where n is
the block length, k is the dimension, and d is the minimum
distance.
Note: If a linear [n, k , d ] code C over F2 has a basis
S = {x1, . . . , xk}, then C = {c1x1 + · · ·+ ckxk | ci ∈ F2}, and
linear independence means all these linear combinations are
distinct, so we have 2k different codewords.
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Example

Let S = {11000, 10101, 01101, 11111} ⊂ F5
2.

• S is not a linear code itself, since it is not closed under
linear combinations: 11000 + 11111 = 00111 /∈ S for
instance.

• S is not linearly independent:
11000 + 10101 + 01101 = 00000

• Since we can rewrite the previous as
11000 + 10101 = 01101 for instance, 01101 is redundant
and can be omitted to get closer to a basis.
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Example, continued
• If a(11000) + b(10101) + c(11111) = 00000, then

0 = a + b + c
0 = a + c
0 = b + c
0 = c
0 = b + c

Easy to see a = b = c = 0 so S′ = {11000, 10101, 11111}
is linearly independent.

• Hence 〈S〉 = 〈S′〉 is a linear code with n = 5, k = 3,
containing these 8 code words: 〈S′〉 =

{00000, 11000, 10101, 11111, 01101, 00111, 01010, 10010}
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What about d?

What is the minimum distance of our example code: C = 〈S′〉 =
{00000, 11000, 10101, 11111, 01101, 00111, 01010, 10010}?
• Note, when we compute the Hamming distance d(u, v) for

u 6= v ∈ C, then d(u, v) = wt(u − v) = wt(u + v).
• But since C is a linear code, u + v 6= 0 ∈ C as well.
• Hence we will have d = minw 6=0∈C wt(w) = 2, so C is a

[5, 3, 2] code over F2.
• The same reasoning shows in general:

Proposition
Let C be a linear code in Fn

2. Then d(C) = minw 6=0∈C wt(w).
(For linear codes, minimum distance = minimum weight of
a nonzero codeword.)
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Generator matrices

Definition
An k × n matrix G is a generator matrix for a linear code C if
its rows form a basis for C.
A code of dimension k > 1 has many generator matrices.

• Given any spanning set S for C, we can find a generator
matrix of a special form (echelon form) by forming the
|S| × n matrix M whose rows are the vectors in S,

• taking M to RREF by elementary row operations,
• discarding any zero rows to form a new matrix G. The

remaining rows are linearly independent and span C,
hence G is a generator matrix.
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Example

Let S = {11011, 10010, 01001}. Let’s find an echelon-form
generator matrix for C = 〈S〉 by the process described above.

• start with M =

1 1 0 1 1
1 0 0 1 0
0 1 0 0 1


• add row 1 to row 2, then row 2 to row 3 to yield1 1 0 1 1

0 1 0 0 1
0 0 0 0 0


• add row 2 to row 1 and discard row 3 (all zeros):(

1 0 0 1 0
0 1 0 0 1

)
The final matrix is an echelon form

generator matrix for a [5, 2, 2] code.
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Encoding with G

Given a generator matrix G for a linear code C, we have a
simple way to do encoding from Fk

2 to C ⊂ Fn
2. Namely, since

the rows of G form a basis for C, we can take entries of vectors
in Fk

2 as the scalars in linear combinations of the rows of G.
This can even be done in a nice, matrix algebra way by
computing v 7→ vG (the product of a 1× k and a k × n is 1× n,
a codeword). For instance, from the last example,

11 7→
(
1 1

)
·
(

1 0 0 1 0
0 1 0 0 1

)
=
(
1 1 0 1 1

)
.
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The dual code

Given a spanning set (or a basis) S = {x1, . . . , xk} for a code C,
we can also consider the set of v ∈ Fn

2 such that xi · v = 0 for
i = 1, . . . , k . Here xi · v is the formal dot product:

(xi1, . . . , xin) · (v1, . . . , vn) = xi1v1 + · · ·+ xinvn.

Note that

xi · v = 0 for all i ⇔ x · v = 0 for all x ∈ C

Definition
The set of solutions v of the system of linear equations x · v = 0
for all x ∈ C is called the dual code of C and denoted C⊥.
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More on the dual code

Proposition
If C is a linear code of dimension k and blocklength n, then C⊥

is a linear code of dimension n − k and blocklength n.

Proof: If u, v ∈ C⊥ and c ∈ F2, then x · u = x · v = 0 for all
x ∈ C. But then 0 = x · u + x · cv = x · (u + cv). This shows
that u + cv ∈ C⊥. Hence C⊥ is also a linear code. The claim
about the dimension can be seen by considering the RREF
system of linear equations corresponding to a RREF generator
matrix G for C. It will also follow from the next discussion about
parity check matrices.
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Parity-check matrices

The dot product x · v can also be computed as:

x · v =
(
x1 · · · xn

)v1
...

vn


If the columns of an n × dim(C⊥) matrix H are a basis for C⊥,
then for any generator matrix G for C, GH = 0.

Definition
A parity-check matrix for a linear code C is a matrix H whose
columns form a basis for C⊥.
Note: H = (1, . . . , 1)t for the check-bit code we saw yesterday.
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Algorithm for determining a parity-check matrix H

For linear codes over F2, there is a very nice process
(Algorithm 2.5.7 in text) for determining a parity-check matrix:
• Start from a RREF generator matrix G for C.
• Let X be the k × (n − k) matrix obtained by deleting the

columns containing the leading entries on each row.
• In the rows of H corresponding to the leading columns of

G, place the rows of X , in order.
• In the other n − k rows, place the rows of an

(n − k)× (n − k) identity matrix, in order.

• Easiest case is if G = (Ik |X ). Then H =

(
X

In−k

)
. (If the

leading columns of G are not the first k columns, things get
“mixed up” more.)
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Example 1

Say G =

(
1 0 0 1 0
0 1 0 0 1

)
from previous example. Then

G = (I2|X ), where X =

(
0 1 0
0 0 1

)
. According to Algorithm

2.5.7,

H =


0 1 0
0 0 1
1 0 0
0 1 0
0 0 1


It’s easy to check that GH = 0. Moreover, from G, we can see
that C⊥ has dimension dim(C⊥) = 3 = 5− dim(C).
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Example 2

Now, say G =

1 1 0 0 1 0
0 0 1 0 1 1
0 0 0 1 0 1

 with leading entries in

columns 1,3,4, and X =

1 1 0
0 1 1
0 0 1

. Then according to the

algorithm
• We start with 

1 1 0

0 1 1
0 0 1


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Example 2, continued

• Then fill in with rows from a 3× 3 identity matrix:

H =



1 1 0
1 0 0 ←
0 1 1
0 0 1
0 1 0 ←
0 0 1 ←


Again, can check that GH = 0. In this case, both C and C⊥

have n = 6 and k = 3.
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Syndrome decoding – an introduction

We saw last time that encoding could be done for linear codes
using a generator matrix and matrix multiplication. This uses
much less information (especially for codes with large n and k )
than the methods which would apply for general (i.e. non-linear)
codes. There we would essentially have to store a table of all
the code words and look up the appropriate codeword for each
v ∈ Fk

2 each time we wanted to encode a word.

Today, we will see that there is a corresponding simplification of
the process of decoding for linear codes, using a parity-check
matrix.

Coding Basics Linear Codes Syndrome Decoding Bounds on Codes, Hamming Codes

Notes

Coding Basics Linear Codes Syndrome Decoding Bounds on Codes, Hamming Codes

Key property of H

By what we saw yesterday, if H is a parity-check matrix for a
code C,

u ∈ C ⇔ uH = 0

Proof: ⇒: The columns of H form a basis for C⊥, so uH = 0,
since u · h = 0 for all columns h in H.
⇐: if uH = 0, then u · h = 0 for all h ∈ C⊥. So u ∈ (C⊥)⊥. Now,
C ⊆ (C⊥)⊥, and

dim(C⊥)⊥ = n − (n − k) = k .

Hence (C⊥)⊥ = C.
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Background on syndromes

• If a codeword u is sent and u + e is received, then

(u + e)H = uH + eH = 0 + eH = eH

depends only on the error.
• We call s = (u + e)H = eH the error syndrome
• The set of all words y with yH = s for a given s ∈ Fn−k

2 is
e + C = {e + u | u ∈ C} (a coset of the code C).

• (Proof: e + C ⊆ {y | yH = eH} is clear from the above. On
the other hand, if yH = eH, then (y − e)H = 0, so
y − e = u ∈ C and y = e + u ∈ e + C. )

Coding Basics Linear Codes Syndrome Decoding Bounds on Codes, Hamming Codes

Notes

Coding Basics Linear Codes Syndrome Decoding Bounds on Codes, Hamming Codes

• For a BSC, for instance, the most likely errors are the
errors of smallest weight.

• This suggests that we should look for the smallest-weight
vectors in each coset e + C.

• Proposition
Let d(C) = 2t + 1 or 2t + 2. Then if there is a word of weight
≤ t in a coset e + C, that word is unique.
• Proof: If e + u and e + v both have weight ≤ t , then

wt((e + u) + (e + v)) = wt(u + v) ≤ 2t . But u + v ∈ C.
Hence u + v = 0 so e + u = e + v .
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The coset leader table and decoding

• The smallest-weight vector(s) in a coset e + C are called
the coset leader(s).

• The coset leader table (or standard decoding array, SDA
as in our text) is a table giving the coset leaders for each
coset (or each possible syndrome).

• By the last proposition, if d(C) = 2t + 1 or 2t + 2, and the
error has weight ≤ t , then the corresponding entry of the
coset leader table will have just one entry.

• Syndrome decoding algorithm:
• compute the syndrome s = yH of the received word y ,
• look up the coset leader(s) in the table for the coset

corresponding to s,
• (if the leader is unique) subtract (or add – same thing in F2!)

the coset leader from the received word.
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Example – syndrome decoding

Consider the [6, 3, 3] code C with G =

1 0 0 1 1 1
0 1 0 1 1 0
0 0 1 1 0 1

.

We have

C = {000000, 100111, 010110, 001101,

110001, 101010, 011011, 111100}.

(Given what we have seen so far, we actually have to do this to
see that d = 3 – note that the nonzero codewords of smallest
weight have weight 3.)
Since 3 = 2 · 1 + 1, we have t = 1, and we know this code can
correct any single bit error in a received word.
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Syndrome decoding example, continued

• Now we construct the coset leader table (SDA) for C.
• Since G is in RREF, by Algorithm 2.5.7 from yesterday we

have

H =



1 1 1
1 1 0
1 0 1
1 0 0
0 1 0
0 0 1


• So, the syndromes s = yH will be in F3

2, and there will be
23 = 8 different possible syndromes.
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Syndrome decoding example, continued

• The coset of the syndrome s = 000 is C itself (this is
always the case)

• The coset of the syndrome s = 100 is the set of solutions
of yH = 100, or

y1 + y2 + y3 + y4 = 1
y1 + y2 + y5 = 0
y1 + y3 + y6 = 0

• (Shortcut!) Think of y4, y5, y6 as the “basic variables” and
y1, y2, y3 as the free variables. This gives the coset

{000100, 100011, 010010, 001001, 110101, 101110, 011111, 111000}

= 000100 + C.
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Syndrome decoding example, continued

Continuing in the same way, we get the coset leader table

syndrome corresponding coset – leader(s) underlined
000 000000, 100111, 010110, 001101, 110001, 101010, 011011, 111100
100 000100, 100011, 010010, 001001, 110101, 101110, 011111, 111000
010 000010, 100101, 010100, 001111, 110011, 101000, 011001, 111110
001 000001, 100110, 010111, 001100, 110000, 101011, 011010, 111101
110 000110, 100001, 010000, 001011, 110111, 101100, 011101, 111010
101 000101, 100010, 010011, 001000, 110100, 101111, 011110, 111001
011 000011, 100100, 010101, 001110, 110010, 101001, 011000, 111111
111 000111, 100000, 010001, 001010, 110110, 101101, 011100, 111011

Note: Each word of length 6 occurs exactly once in the table.
Only the coset of s = 011 fails to have a unique coset leader.

Also: Only the coset leaders need to be stored (not the whole
cosets).
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Syndrome decoding example, continued

• Say the word y = 101111 is received.
• Start by computing

s = yH = (1, 0, 1, 1, 1, 1)



1 1 1
1 1 0
1 0 1
1 0 0
0 1 0
0 0 1

 = (1, 0, 1).

• From the coset leader table, the corresponding coset has
leader ` = 001000.

• So we decode to y + ` = 101111 + 001000 = 100111.
Can see this is a codeword!
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Syndrome decoding example, continued

Question: What would happen if we received a word like
001110?

We have s = (0, 0, 1, 1, 1, 0)



1 1 1
1 1 0
1 0 1
1 0 0
0 1 0
0 0 1

 = (0, 1, 1)

This is the case where there is not a unique coset leader. What
would the decoder need to do in this case?
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Syndrome decoding example, concluded

• The main “down-side” of this method may not be apparent.
Realistic codes might have n, k in the 100s or 1000s.

• The coset leader table has at least 2n−k words of length n.
Something like 2500 ' 1050 is really huge!

• However, the syndromes correspond to the integers
0, 1, . . . , 2n−k − 1, so they come with a natural ordering.
We could use a variant of the binary search, in which the
length of the list to be searched is cut down by a factor of 2
each time.

• No more than n − k comparisons of the syndrome with a
key to the coset leader table would be needed.

• To summarize – big list of coset leaders, but efficient
searching methods are possible!
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Introduction – bounds on codes

We have seen a few small examples of codes at this point, but
none of them would be especially attractive for applications.
Since the larger d is, the more bit errors a code can detect and
correct, it is natural to ask:

Given an n and a k, what is the best possible d for a linear
code over F2?

Today, we want to develop several bounds on the parameters of
codes that (even if they do not guarantee the existence of
codes), at least give some idea of what is possible.
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Richard Hamming

Our first bound was developed by Richard Hamming, who
• worked on the Manhattan Project that developed the

atomic bomb in WWII,
• later worked at Bell Labs from 1946 to 1976 on various

problems in communications
• at Bell Labs, he was a colleague of Claude Shannon, (the

“father of coding theory”).
• Hamming died in 1998 after receiving numerous honors for

his pioneering work.
• We already saw Hamming’s name in the Hamming

distance on Fn
2.
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The Hamming balls, again

• Recall from our Theorem on Monday that if d = 2t + 1 or
2t + 2 for a code, then the closed balls of radius t around
distinct codewords must be disjoint:

u 6= v ∈ C ⇒ B(u, t) ∩ B(v , t) = ∅.

• The number of words in one such ball is given by:

Proposition
Let u ∈ Fn

2. Then |B(u, t)| =
∑t

i=0
(n

i

)
.

• Proof: The words in B(u, t) are obtained from u by
“flipping” at most t of the bits in u. There are

(n
i

)
ways to

select a collection of i bits to “flip.”
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The Hamming (sphere-packing) bound

If d = 2t + 1 or 2t + 2, then B(u, t) for u ∈ C are pairwise
disjoint, but their union also must “fit” inside Fn

2. Hence, we
have proved:

Theorem (Hamming bound)
Let C be a code with blocklength n and d = 2t + 1 or 2t + 2.
Then

|C| ≤ 2n∑t
i=0
(n

i

) .
(This holds for non-linear codes as well, since we have not
used linearity properties in any way.)
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Deductions from the Hamming bound

Question: What is the largest number of codewords a code with
n = 7 and d = 5 can have?
• We have 5 = 2 · 2 + 1, so t = 2. Hence∑2

i=0
(7

i

)
= 1 + 7 + 21 = 29.

• We have |C| ≤ 27

29
.
= 4.4.

• Since |C| must be an integer, this says |C| ≤ 4.
• Caution: This does not show that such a code exists or

how to find one. Challenge: Can you find one? It is
relatively easy to see that C cannot be linear.
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Another example

Question: What is the largest d possible for a linear code with
n = 23 and k = 11?
• We must have |C| = 211, so 211 ≤ 223∑t

i=0 (23
i )

.

• So
∑t

i=0
(23

i

)
≤ 212 = 4096.

•
∑3

i=0
(23

i

)
= 2048, but

∑4
i=0
(23

i

)
= 10903.

• So, t is at most 3, and d ≤ 2 · 3 + 2 = 8.
• In this case, [23, 11, 8] codes do exist (from an online table

of best-known codes that we will see next week!)
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The Singleton bound

• Our next result applies only for linear codes.

• Theorem (Singleton bound)
Let C be a linear code with parameters [n, k , d ]. Then

d ≤ n − k + 1.

• Codes meeting this bound are called MDS (maximum
distance separable) codes
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Proof of the Singleton bound

Proof:
• The words of C are the scalars in linear combinations of

the rows of a parity-check matrix that add up to 0.
• Hence, if C has d(C) = d , then all sets of d − 1 rows of H

are linearly independent, but some set of d rows of H is
linearly dependent.

• H is an n × (n − k) matrix that has rank n − k . Hence by
the above, d − 1 ≤ n − k .

• This proof shows that C is MDS if and only if all sets of
n − k rows of H are linearly independent.
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Minimum distance via parity-check matrix

The observation relating d and the rows of the parity-check
matrix is sufficiently important to rate a separate statement.

Theorem
Let H be an n × (n − k) parity check matrix for a linear code C.
If H has the property that all collections of d − 1 rows are
linearly independent, but some set of d rows is linearly
dependent, then C has minimum distance d.

Coding Basics Linear Codes Syndrome Decoding Bounds on Codes, Hamming Codes

Notes

Coding Basics Linear Codes Syndrome Decoding Bounds on Codes, Hamming Codes

Comments on Singleton

• The Singleton bound can also be rearranged to say that for
a linear code k ≤ n − d + 1.

• The Singleton bound is often much less “tight” than the
Hamming bound.

• For example, consider the case n = 23, k = 11 that we
saw before. Hamming⇒ d ≤ 8.

• But Singleton only gives d ≤ 23− 11 + 1 = 13. (True, but
not too close to the best d that is actually possible!)

• On the other hand, there are situations (especially for
codes over larger alphabets), where MDS codes (codes
with d = n − k + 1 actually do exist!
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The Gilbert-Varshamov bound

• The Hamming and Singleton bounds both give upper
bounds on |C| (or k for linear codes).

• Our next result gives a lower bound that says, in effect, the
best possible code is at least as good as the bound.

• Theorem (Gilbert-Varshamov Bound)
There exists an [n, k , d ] linear code for any combination of
parameters satisfying

2n−k >
d−2∑
i=0

(
n − 1

i

)
.
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Proof of Gilbert-Varshamov

Proof:
• The proof consists of showing that we can construct a

parity-check matrix H for a code of minimum distance d
under this hypothesis.

• By the above, we need to construct an n × (n − k) matrix
with the property that all collections of d − 1 rows are
linearly independent.

• The construction will be inductive. Start by picking any
nonzero first row.

• Now assume that we have constructed the first i rows of H;
call the submatrix Hi .
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Proof of Gilbert-Varshamov, continued

• Given the i rows of Hi , there are at most(
i
0

)
+

(
i
1

)
+ · · ·+

(
i

d − 2

)
vectors in Fn−k

2 that are linear combinations of the rows of
Hi .

• On the other hand, by hypothesis,

2n−k >

(
n − 1

0

)
+

(
n − 1

1

)
+ · · ·+

(
n − 1
d − 2

)
≥
(

i
0

)
+

(
i
1

)
+ · · ·+

(
i

d − 2

)
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Proof of Gilbert-Varshamov, concluded

• Hence, there are always vectors in Fn−k
2 left over!

• We can choose any one of them as the next row for H
while retaining the property that all collections of d − 1
rows are linearly independent.

• Continue in this way until H has n rows.
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Example

Question: Does there exist a linear [15, 6, 5] code over F2?

• By Gilbert-Varshamov, 215−6 = 29 = 512.
•
∑3

i=0
(14

i

)
= 1 + 14 + 91 + 364 = 470.

• Since, 512 > 470, the answer is yes!
• The process of the proof of Gilbert-Varshamov could be

used to construct a parity-check matrix H for such a code.
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Perfect codes

Definition
Codes for which the Hamming bound is achieved:

|C| = 2n∑t
i=0
(n

i

)
are known as perfect codes.
We will conclude today by considering a famous family of
perfect codes, also found by Richard Hamming.
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Hamming codes

• Let H be a parity-check matrix whose rows consist of all
2r − 1 nonzero vectors in Fr

2 (in some order).
• For instance, if r = 3 we could take

H =



1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
1 1 1


• Note that by construction all sets of 2 rows of H are linearly

independent (since they are distinct).
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Hamming codes, continued

• By our theorem on d and the parity-check matrix, the
corresponding code has d = 3.

• The other parameters are n = 2r − 1, and k = 2r − r − 1.
• Hamming codes are perfect codes since t = 1, so:

|C| = 22r−r−1 =
22r−1

1 + 2r − 1
.

• The integer r ≥ 1 is arbitary, so we have an infinite family
of perfect codes with parameters [2r − 1, 2r − r − 1, 3].
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