
MSRI-UP 2009 – SEMINAR IN CODING THEORY –
COMPUTER LABS

Background and Goals

Part of our work this summer will be carrying out calculations with codes using
the Maple computer algebra system. This week, we will want to get familiar doing
mathematics in this context.

General Information about Maple. Here is some information about working
with Maple’s basic file management features.

Launching Maple

To get into Maple, you will need to:

(1) Turn the computer and monitor on.
(2) Wait a few moments while the computer “boots up” and launches Windows.

Add directions specifically for MSRI setup
(3) Add directions specifically for MSRI setup
(4) Add directions specifically for MSRI setup

Maple Worksheets

Note: recent versions of Maple have several different formats for working with files.
I personally prefer the worksheet interface (probably because I’m most familiar with
it). To start a worksheet document you can use

File/New/WorksheetMode

from the pull-down menus. The alternative Document mode does not have the same
segmentation into input and output regions, etc. You may want to experiment with
it as well.

Worksheets are integrated text/graphics/mathematics documents where any or
all of the following can be done:

(a) you can type in commands from the keyboard to ask Maple to perform
many different kinds of calculations, read data from external files, store
work in files, etc.

(b) output generated by Maple from your input commands (numerical values,
symbolic formulas, and graphics) will be displayed,

(c) you can modify commands, generating new output, store your results for
use later, etc.

(d) you can enter text to annotate and explain the results of computations.
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Much of your interactive “management” of a worksheet in progress will take place
through the File, Edit, View, Insert, etc. pull-down menus across the top, the “tool
bar” below them with the icons for various operations (can you guess what each
of them does?) the “scroll bar” on the right that you can use to move around
within the worksheet, to see previous input and output lines, etc. Most of the
common operations appear both as items in one of the pull-down menus and as
toolbar buttons. The toolbar buttons are faster to use, but somewhat limited in
the options they offer. So you will want to have a general idea what is accessible
from where in the pull-down menus as well.

Input and Text Regions in a Worksheet

A new worksheet window will be labeled something like Untitled (1) - [Server
1]. After you have saved (see below), the worksheet will be assigned a name. You
can have several worksheets open at the same time. All the open worksheets will
be shown by “tabs” below the tool bar in the Maple window, and you can toggle
back and forth between them by highlighting the one you want to see.

On the first line of the worksheet, there is a [> in red. This is the Maple input
prompt – the signal that Maple is ready to accept a command from you and try to
execute it. If you are at the end of a worksheet in progress, a new input prompt will
be generated automatically each time you enter a command and execute it. You
can also go back and insert new commands and output at any point in a worksheet
as follows. You can insert an input prompt and an input region at any point in the
worksheet by placing the cursor at the desired location and pressing the toolbar
button marked with [>. (After executing an inserted command like this, Maple
will drop to the next input line, so to insert several input lines in the middle of a
worksheet, you will need repeat the above.)

As we mentioned before, Maple worksheets can contain text as well as commands
and output. To create a text region you can press the button marked by a capital
T. The text region will be inserted immediately after the current cursor location.
Any text can now be entered there, and it will be treated as an “inert” comment.
That is, it will appear as you enter it when you print out the worksheet, and it will
not be treated as Maple input.

What is a Maple Command?

It may help to think of a command as a program or function of one or more
variables that Maple knows how to compute, given “inputs” from you. You must
then keep straight the distinction between these functions Maple knows how to
execute, and the functions or formulas you enter for Maple to work with!

Almost all of the built-in Maple commands have a syntax like the plot command
discussed in Day 1 below. The format is either

name(values); or name(values):

In this general description, name is the name of the command or function (like
“plot”), there is a matching set of open and close parentheses following the name,
and they surround the values – the input from you the command needs to do its
job (like the formula of the function to be plotted and the range of x-values you
want). The values are listed separated by commas within the parentheses. The
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two forms of the command above tell Maple to execute the command when you
press ENTER on that input line. In the first case – ending the command with
a semicolon (;) – you are instructing Maple to display the output. With a colon
(:), Maple will execute the command but not display the output (this is useful
sometimes for intermediate steps in a big computation where you don’t want or
don’t need to see the output).

Getting Help On-Line

The exact format Maple is expecting for each type of command is specified in
the programming of the Maple system. Usually, there is little or no freedom in the
ordering of what has to go where and in what format in the list of values. Much
useful information on this for all the built-in commands, and lots of instructive
examples illustrating the different ways commands can be used, are contained in
the Maple on-line help facility. For example try looking at the on-line help page for
the plot command. (From the Help pull-down menu, select Maple Help. When the
Help window launches, type in the word “plot” at the top left and press Search.)
Note the example plot commands at the bottom and the links to related help pages.

Saving and Reloading your Maple Worksheets

When you begin working on a worksheet, you will usually want to save your
work every once in a while in case a computer problem develops, or in case you
need more than one lab session to complete the work you are doing. This can be
done most directly by saving to your network drive. Follow these directions:

(1) In Maple, select the Save option from the File pull-down menu (or click the
tool bar icon that looks like an old-fashioned diskette).

(2) If you are saving your work for the first time, you will see a Save as dialog
box. In the “Save in” area, make sure that your personal folder is showing,
then go to the File Name box, and type in a name for the file where the
worksheet will be stored (any string of letters and digits – no spaces – no
more than 8 characters long is OK). The default is to store the file with
the “extension” mw for Maple Worksheet . For instance, a good choice for
this first lab might be something like lab1 . Then click the Save button
to save the worksheet. The new worksheet file will appear as lab1.mw in
the current folder. You will only need to type the filename in once in a
session. Subsequent saves just update the file. If you want to save the
worksheet again but with a new name, use the Save As option from the
FILE pull-down menu.

(3) When you have the worksheet saved as you want it, you can exit Maple, or
continue to work on it.

(4) To update the worksheet further in a later session, you can read the work-
sheet back into Maple using the Open option from the File Menu, or the
“opening folder” toolbar button. Maple will prompt you as above for the
name of the worksheet with a dialog box very like the Save As box described
above. Check to see that Maple is looking in the correct folder, then select
the worksheet you want, and click Open.
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IMPORTANT NOTE: When you read a previously created worksheet into a new
Maple session, you have not actually executed any of the commands in it in the
new session (even though output saved as part of the worksheet file will display).
If you want to make use of any results in that worksheet, you will need to execute
the commands again. In the Edit pull-down menu, you will see an Execute option
that lets you recompute an entire worksheet or a section of one.

Printing

With the worksheet you want to print open and highlighted, use File/Print
from the pull-down menus (or press the toolbar icon that looks like a printer),
and press Print in the dialog box (the settings should be set up correctly to print
automatically). Your output should appear shortly on the printer.

Getting Out

When you want to leave, save your work, then quit the Maple window (File/Exit).

Laboratory Assignments

Week 1, Day 1: A First Sample Maple Session. Let’s get right down to work
and walk through a first sample session illustrating some of the different features
of this program. First, you will need to get into Windows and Maple as described
in the General Information section above.

2D Plotting

The basic Maple command for 2D plotting, used for graphs of the form y = f(x)
(and also for parametric curves α(t) = (x(t), y(t))) is called plot. The basic format
for graphs y = f(x) is

plot(function,range,options);

where
(1) function is the function to be plotted – the simplest way to specify one is

via a formula for f(x) (an expression in Maple)
(2) range is the range of x-values you want to see plotted, entered in the form

x = low..high, and
(3) options can be used to control the form of the plot if desired. No options

need be specified however if you don’t want to.
Exercise 1

To plot y = x4 − 2x3 + x− 5 sin(x2) for −2 ≤ x ≤ 1, for instance, you could use
the Maple plot command with no options:

plot(x^4-2*x^3+x-5*sin(x^2),x=-2..1);

Try this now. (Note: The close parenthesis comes directly after the range of x-
values if there are no options.) Type in this command line (exactly as here) and
press ENTER. (Until you enter either a semicolon or a colon and press ENTER,
Maple will not do anything with your command. Also, if a command you want to
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enter doesn’t all fit on one line, just keep typing, but don’t press ENTER until you
are finished. Maple automatically wraps around to a new line if you need it.)

If you make a typing mistake, Maple will let you know about it (!) One frequent
source of errors in Maple sessions is unmatched parentheses, (or square or curly
brackets, etc.) One “hacker’s trick” is to count the open parens, count the close
parens and make sure you get the same number (of course, if you don’t, you also
have to decide where to insert the missing one ...).

Fortunately, if there is an error, the whole command does NOT need to be
re-entered. Just move the cursor arrow to the place on the input line you want
to change, press the left mouse button, and edit the input as needed. Typing
from the keyboard will insert new stuff at the cursor location; the DELETE and
BACKSPACE keys will remove stuff (DELETE removes the character in front of
the “insert point”; BACKSPACE removes the character in back). You can also
move around on the input line with the ARROW keys if more than one thing needs
to be changed. When you think it’s OK, press ENTER again to have Maple execute
the command again. (Pressing ENTER with the cursor anywhere on an input line
executes the whole input line – you do not need to be at the end of the input line.)

When all goes well you will see the graphics output displayed under the input
command in the worksheet.

From the formula y = x4 − 2x3 + x− 5 sin(x2), you might guess that there is at
least one other x-intercept for this graph for x > 2 (why?). To see that part of the
graph as well, edit your previous command line to change the right hand endpoint
of the interval of x values (do not retype the whole command). Press ENTER on
that input line to have Maple execute the command again. Experiment until you
are sure that your plot shows all the x-intercepts of this graph. (You can repeat this
process of editing a command and re-running it as often as you want; the previous
output is replaced by the new output each time.)

When you get a plot with all the x-intercepts shown, add one more thing. Some-
times, an informative title makes a graph much more understandable. To add a
text title to a plot, you can insert a comma after the range of x-values, and include
an option in the plot command of the form

title=’whatever you want’

Add an appropriate title to your plot.

Maple Expressions

The formula for the function we plotted in the last example is a Maple expression.
Expressions are entered in something like usual mathematical notation:

(1) The symbols for addition, subtraction, multiplication, and division are
+,−, ∗, / respectively. When you are making an expression with fractions
and you type the / symbol, Maple will put you in the denominator auto-
matically. To get out of the denominator, use the right arrow key.

(2) The caret (ˆ) is the Maple symbol for raising to a power. When you type
the caret, Maple will enter exponent mode and raise the symbols you type
next so that they look like an exponent in usual mathematical notation.
To get out of this mode, use the right arrow key.
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(3) The asterisk symbol for multiplication MUST be typed whenever you are
performing a product in a formula (but note that it shows up in the formula
Maple displays as a dot).

(4) You may need to use parentheses to group terms to get the expressions
you want. The rule to keep in mind is: Once you start a denominator or
exponent, Maple keeps you in that mode until you “get out” with a right
arrow. For example, if you typed the symbols a + b*c^2/d + e in this
order (remembering to use the right arrow after the 2 in the exponent, but
not entering a right arrow after the d), Maple will show the mathematical
formula:

a +
bc2

d + e
.

If you really want
a + bc2

d + e
,

you will need to put parentheses around the numerator. If, on the other
hand, you really want

a +
bc2

d
+ e,

then omit the parentheses on top, and put in a right arrow after the d. This
might seem confusing the first time you use Maple’s “2D input” but it gets
to be second-nature after a while. Until then, it is always good to examine
the output carefully to make sure it’s the expression you really want(!)

(5) Maple “knows” all the usual elementary functions from calculus. The names
of the most common ones are sin, cos, tan, arctan, arcsin, exp,
ln, sqrt. To use one of these functions in a Maple formula, you put the
name, followed by the “argument” (that is, the constant or expression you
are applying the function to) in parentheses. Note: exp(x) is ex. There
is no caret for exponentiation here – that is built into the definition of the
exp function.

Exercise 2

(a) Enter a Maple expression corresponding to the mathematical formula

(a + bc)2

d + e
f

?

Check with Maple’s output.
(b) Enter a Maple expression corresponding to the mathematical formula

−b +
√

b2 − 4ac

2a

(from the quadratic formula). Enter your expression as input and check
with Maple’s output.

(c) Enter a Maple expression corresponding to the mathematical formula

4t(sin(5t2)− e
−3
t2 )

1 + t2
.
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Exercise 3

The theorem that really started the subject of coding theory was proved by
Claude Shannon in 1948. It says the following. There is a quantity called the
capacity of a communications channel that controls how reliable it is. For informa-
tion rates r less than the capacity (recall r = k/n for block codes), if we are willing
to take n large enough, then it is possible to get arbitrarily small probability of
incorrect decoding.

Theorem 0.1 (Shannon Channel Coding Theorem). For any information rate r
less than than the channel capacity and any ε > 0, there exists a block length n0

such that there exist codes with n ≥ n0 and rate r for which the probability of
incorrect decoding of a word is less than ε.

(Unfortunately, this is a pure existence statement – Shannon did not give a
method for constructing such codes. Finding these good codes is one of the major
problems in coding theory!)

For the binary symmetric channel that we discussed in class, if the bit error
probability is p, the channel capacity is

C(p) = 1 + p log2(p) + (1− p) log2(1− p).

Do the following (and include answers to the questions in text regions).

(1) Plot the capacity C(p) as a function of p for 0 < p < 1/2. (Look up
logarithm functions in Maple’s online help to see how to get the logarithm
with base 2, log2(x).)

(2) What happens if you plot C(p) on the interval 0 < p < 1 instead? Does
it make sense for a channel with p = .9 to be essentially equivalent to one
with p = .1? Why or why not?

(3) If you have two codes, C1 with rate r = .8 and C2 with rate r = .1, which
would be better to use on a very error-prone binary symmetric channel with
p = .3 Why?

Symbolic Computation in Maple

Much of our work in Maple starting later this week will consist of symbolic
computations – mainly various manipulations of matrices and polynomials. To
conclude today, we will look at some first examples of this sort of computation in
Maple, with polynomials in one variable.

The assignment operator :=

Often we will want to save the result of one step in a computation for use in
later steps. A Maple command of the form

name := expression;

assigns the right-hand side to the name on the left. (This is the same idea as
the assignment statement in programming languages such as Java, C++, Pascal,
Fortran, Basic, etc.) Usually, the right-hand side will be a known expression, or
a command performing some operation on information we already know. The
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assignment can be understood as taking the result of the operation and storing it
under the abbreviation name for later use. For instance,

cube := (x^2 - 16)^3;

Then later on, we could “reuse” the value of cube in other expressions, just by
putting in the name cube at the appropriate place (e.g. plot(cube, x=5..10);).
Note: Maple also gives you a second way to refer back to results of previous com-
putations. At any point in a session, if you enter %, this stands for the result of
the previously executed command, %% stands for the result of the command before
that, and so on. (Caution: The sequence is the sequence of the commands you have
executed in the current session, not the sequence of input lines in the worksheet.
This can be confusing if you skip around, inserting new command lines between
existing ones.)

Additional symbolic commands on polynomials

Maple has built-in commands:

• expand to multiply out (and also simplify) a factored or partially factored
polynomial. Format: expand(poly); This works on polynomials in any
number of variables.

• factor to factor a polynomial. This gives the factorization with rational
number coefficients. The factor command does not know about radicals,
complex numbers, etc. Format: factor(poly); This also works on poly-
nomials in any number of variables.

• quo to compute the quotient on division of one polynomial f(x) by another
g(x). Format: quo(f,g,x); Note: the variable must be included. If f or g
contain other variables besides x, they will be treated as symbolic constants
in the coefficients.

• rem to compute the remainder on division of one polynomial f(x) by an-
other g(x). Format: rem(f,g,x); Note: the variable must be included
again.

• diff to compute the derivative of a polynomial (or any other function)
with respect to a given variable. Format diff(f,x);

Exercise 4

Here is a sample sequence of Maple input lines illustrating a possible symbolic
computation using these commands. Enter and execute them in sequence. Look
carefully at the output and make sure you understand what happened in each case:

cube := (x^2 - 16)^3;
dcube := diff(cube,x);

expand(dcube);
dd := x^2-x+1;

q := quo(cube,dd,x);
r := rem(cube,dd,x);

factor(expand(q*dd+r));
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Assignment 1 – Due at end of Lab Period, Monday

Include text regions describing what you did in each of Exercises 1,2,3,4 above,
then save and print out this worksheet and give it to one of the lab instructors.

Week 1, Day 2 – Matrices and Linear Algebra in Maple. In class today,
we saw the definition of binary linear codes (vector subspaces of Fn

2 ). To work with
these in Maple, we need to learn how to enter generator matrices and perform the
basic matrix operations from linear algebra.

Maple has built-in data structures that can be used to represent vectors or
matrices. The simplest of these is the ordered list structure, indicated by placing
the components of the list, separated by commas, inside a pair of square brackets
([, ]). For example, the command

[1,0,1,1,0,1,1]

is an ordered list with 7 entries. To create a (row) vector with these entries, we use
a command like this:

v:=vector([1,0,1,1,0,1,1]);

The result of executing this is a word of length 7 that could represent a word in a
binary code of length 7. The individual entries of the vector can be accessed like
this: v[1] is the first (left-most) entry, v[2] is the second (from the left), v[3] is
the third, and so forth. (IMPORTANT NOTE: Maple has to be “told” that we
want the zeroes and ones to represent binary digits or integers mod 2 when we work
with this vector, though. We’ll see how to do this in a moment! If you don’t do
that, the zeroes and ones are treated as ordinary integers.)

Matrices can be represented as lists of lists. Each component list gives one row
of the matrix. For instance,

G:=matrix([[1,0,1,0,1,1],[0,1,0,1,0,1],[0,1,0,0,1,0]]);

could be used to enter a 3× 6 generator matrix for a linear code with n = 6. The
entry in row i and column j of G is G[i,j]. The output from the assignment above
shows the matrix in usual format, and without commas between the entries on each
row. (The same IMPORTANT NOTE above applies here too.)

Because of the way Maple treats expressions involving matrices, in order to see
the contents of a matrix or vector you have assigned to, you will need to use the
eval function to “evaluate” the name. For instance after entering the assignment
to the matrix G above, if you enter just G; as an input command, the output will
be the letter G; to see the actual contents of the matrix, use eval(G);.

The Maple matrix and linear algebra commands are contained in a separate
“package” called linalg. (Note: this is an old package that has been partly super-
seded by the LinearAlgebra package. However, the operations we will want to do
later with general finite fields are easier this way, so this is what we will use.) To
access the commands in the package, you will need to execute a command

with(linalg);
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in the current session. The linalg package contains procedures for matrix and
vector arithmetic, matrix operations such as determinants, row reduction, transpo-
sition, computing rank, etc., computation of eigenvalues and eigenvectors, solving
systems of linear equations, finding the kernel of a matrix, etc. The Overview
page on the linalg package in the on-line help contains a complete listing of the
available commands with links to the help pages for each command.
Among the most important ones for us will be:

• submatrix – select a submatrix from a given matrix
• concat,stackmatrix – make a larger matrix by putting smaller matrices

together
• matadd – add two matrices of the same size
• multiply – multiply two matrices of appropriate sizes
• Nullspace – find the nullspace or kernel of a matrix
• Linsolve – find the solutions of a general (i.e. possibly inhomogeneous)

system of linear equations
• Gaussjord – find the row-reduced echelon form of a matrix

Submatrices and combining matrices

To pick out a submatrix of a defined matrix, you just indicate the ranges of row
and column subscripts for the submatrix. For example, with the 4 × 7 matrix G
above, if you enter

submatrix(G,1..2,4..5);

the output will be the 2 × 2 submatrix of G formed from the entries in rows 1,2
and columns 4,5.

To create larger matrices out of smaller blocks, you can use either concat or
stackmatrix. To see what each does, and the difference between them, enter the
following sequence of commands:

A:=matrix([[1,1],[0,1]]);
B:=matrix([[1,0],[0,1]]);

concat(A,B);
stackmatrix(A,B);

Note that none of these operations depends in any way on what the entries of the
matrix actually are.

Linear algebra operations mod p

For us, almost all our matrices will have entries in finite fields (F2 = {0, 1} first,
and other finite fields later). As mentioned above, Maple needs to be “told” to treat
the entries of a matrix as elements of a finite field. This is done in two different
ways, depending on the command.

• For the matrix arithmetic commands matadd, multiply, we simply perform
the operation as though the matrices had ordinary integer entries, then take
all entries in the matrix mod 2. For example, with a vector and matrix
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defined as follows:

w:=[1,1,0];
G:=matrix([[1,0,1,0,1,1,1],[0,1,0,1,1,0,1],[1,0,1,0,0,1,0]]);

The command

multiply(w,G);

computes the product wG taking the entries as ordinary integers. There is a
built-in Maple function Normal that reduces the coefficients in any (scalar)
expression modulo any prime. The format is Normal(expression) mod p
where p is any prime number. For instance, the command

Normal(34*x^2 - 2*x + 6) mod 3;

returns x2 + x (all coefficients reduced mod 3). We want to apply this
function to every entry in the product matrix. The appropriate command
is:

map(x->Normal(x) mod 2,multiply(w,G));

This “maps” the function “reduce mod 2” to all entries of the product
matrix and computes the product matrix mod 2.

• The linear algebra commands Nullspace, Linsolve, Gaussjord are sim-
pler to use mod p (but also slightly subtle; see the discussion below and
Exercise 3). These are set up so that if you enter, for instance,

Gaussjord(G) mod 2;

then all the computations in the row reduction to echelon form are done
modulo 2.

Technical note: The capital letters at the start of these commands are significant.
In Maple terms, these are “inert” versions of the standard nullspace, linsolve,
gaussjord commands that allow all computations to be done modulo a prime.
The uncapitalized versions would compute the nullspace, solve the system, or row-
reduce the matrix using ordinary rational number arithmetic on the matrix entries.
The results produced by the “inert” versions can be different from the results of
doing the standard command then reducing modulo 2. See Exercise 3 below.

The Nullspace and Linsolve commands are similar. Nullspace(A) mod 2 will
compute a basis for the nullspace or kernel of the matrix A, doing all arithmetic
modulo 2. For instance, if

C := matrix([[1, 1, 0, 0], [1, 0, 1, 1]]);

then Nullspace(C) mod 2 produces output

{[1, 1, 1, 0], [1, 1, 0, 1]}.
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These two vectors are a basis for the nullspace (over F2, of course!) and are found
in the usual way by reducing C to row echelon form, identifying the “free variables”
and setting each to 1 (others all 0) in turn.

The format of the Linsolve command is Linsolve(A,B) mod 2, where A is the
coefficient matrix of the system, and B is a vector or matrix. For instance, with C
as above, the command

Linsolve(C,vector([1,0])) mod 2;

produces:
[ t3 + t4, 1 + t3 + t4, t3, t4]

The t3 and t4 are Maple’s notation for arbitrary constants. (They are numbered
this way because they come from columns 3 and 4 of the echelon form matrix).
Substituting any values (in F2) for them produces some element of the solution
space. Note that the vector above could also be written as the linear combination

[0, 1, 0, 0] + t3[1, 1, 1, 0] + t4[1, 1, 0, 1]

using the vectors from the basis of the nullspace of C. This shows that the set of
solutions is a coset of the nullspace – a standard result from linear algebra that is
true for vector spaces over any field of scalars.

Assignment 2, part a

(1) Algorithm 2.5.1 in the text gives a method for computing a generator matrix
for the binary linear code 〈S〉 spanned by a set of vectors S. Using the
Maple commands discussed above, do parts e,f,h,i of Exercise 2.5.3 in the
text.

(2) Algorithm 2.5.7 gives a method for computing a generator matrix for the
dual C⊥ of the code C = 〈S〉 spanned by a set of vectors S. Using the
Maple commands discussed above, do Exercise 2.5.12 parts b,d,f in the
text.

(3) In the discussion of the Gaussjord command above, we saw how to perform
the row-reduction modulo 2. A natural question is: If we start from a
matrix of zeroes and ones, why couldn’t we just do the gaussjord command
(uncapitalized), then reduce all the entries in the resulting matrix by 2 (as
we did with sums and products)? In this question you will see that this is
not possible in some cases (although it might work in some other cases).
Consider the matrix

A =




1 1 0
1 0 1
0 1 1




What is the output from the command gaussjord(A);? What is the out-
put from Gaussjord(A) mod 2;? Explain the difference, by performing
the steps in the row reduction to echelon form one by one (by hand). What
would happen if we did these same operations on a matrix with these first
three columns, and some further columns consisting of zeroes and ones?
What is the “bad” situation that can arise in doing a row reduction using
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rational arithmetic and reducing mod 2 at the end? (i.e. When will doing
that lead to different results than doing all arithmetic mod 2?)

Week 1, Days 3 and 4: First Steps in Maple Programming For Coding
Theory. Note: All of the Maple data structures and commands used here are also
illustrated in the worksheet Primer.mw in the class folder. You may also want
to refer to that as you are working through the following examples and exercises.
You can copy that worksheet and open it in Maple along with your lab assignment
worksheet.

Maple has a large collection of built-in commands for performing various mathe-
matical computations, but unfortunately it does not contain any built-in functions
for coding theory operations. However, it does contain a programming language
that you can use to code and implement your own new commands or procedures
extending the basic functionality of the program. (This is an imperative or proce-
dural language similar in spirit and syntax to the older teaching language Pascal
and, to a lesser degree, C. It does not incorporate objects, etc. as in Java or C++.)
In these lab meetings, we will work through the development of Maple procedures
for several of the coding theory operations we have been discussing, leading up to a
“Challenge problem” to develop a procedure for computing the SDA or coset leader
table used in syndrome decoding (for small examples, of course!) As we go along,
we will start to develop our own “library” or “package” of Maple procedures for
coding theory and add to it as we go along over the next weeks.

Open a text editor window, type in the following lines, and save to your diskette
under the file name CTL.map:

with(linalg):

VMP := proc(v::vector,A::array,p::integer)
#
# computes the product of the vector v and the
# matrix A (in order v.A) modulo p
#
local P;
P:=map(x->Normal(x) mod p,multiply(v,A));
RETURN(eval(P))
end proc:

This is a first example of a Maple procedure. It takes a (row) vector v, a matrix A,
and returns the product P = vA, modulo the prime integer p. In Maple, execute
the command

read "path:/CTL.map";

to read in the code for this new procedure. Note: information about the correct
path to use will be given out in lab. Then to use the procedure to compute the
product of w and B mod 2 for some vector w and matrix B, you would enter a
command like this:

VMP(w,B,2);
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The w and B could be an actual pair of a vector and a matrix, or a pair of names
that appeared in earlier assignment statements. (This second method is preferred !)
The values w, B, and 2 are “filled in” for the parameters v, A, and p in the
procedure heading, the product mod 2 is computed as we discussed earlier, and the
result is returned and displayed as the output from executing the procedure call.
The command

Prod:=VMP(w,B,2);

computes the product and assigns it to Prod. Test the procedure on several inputs
and check that its output is correct.

The general format of a Maple procedure is as in this first example:

• The first line is the procedure heading, which always has the form

procedurename:=proc(parameterlist)

The parameter list is the list of “inputs” (information the procedure needs
to do its job). The parameters are separated by commas in this list. Each
parameter can be declared by type in the heading as we did in this example,
but this is optional. (In general, it is a good idea to do this because it helps
to catch errors.)

• The lines starting with # characters are comment lines. They are not pro-
cessed or executed by Maple as part of the procedure. They are there to
remind humans reading the procedure what it does and how. You should
always comment your code. It is surprisingly difficult to read code even you
yourself have written if you have not thought about it for a while. The
comments in the procedures presented in this handout are not as detailed
about the methods used as would be desirable. The reason for these rel-
atively “skimpy” comments is that the explanations are provided in the
text(!)

• Then comes a list of local and global variable declarations. Local variables
are known only within the procedure and their values are not saved once
the procedure is finished, so they do not interfere with other variables in
your Maple session. If a variable is not declared as local, it is assumed
to be “global” (i.e. known in the current Maple session). This can cause
problems if you have inadvertently used the same name more than once.

• Following the local and global variable declarations comes the procedure
body. This can be any list of Maple commands. One or more of these
commands can be RETURN statements which specify the output of the
procedure.

Now let’s build up other procedures for operations such as computing the minimum
distance of a code. First add the following two procedures to your CTL.map file. The
first of these computes the row-reduced echelon form for the linear code generated
by a given set of vectors. Note that this determines the dimension, k of a code in
the process, although k is not explicitly returned as an output.

GenMat := proc(G::array,p::integer)
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#
# computes the row-reduced echelon form generator
# matrix for the code spanned by a set of vectors modulo p
#
local RREF,k;
RREF:=Gaussjord(G) mod p;
k:=rank(RREF);
RETURN(eval(submatrix(RREF,1..k,1..coldim(RREF))))
end proc:

The following procedure computes the Hamming weight of a vector.

HamWeight:=proc(w::vector)
#
# computes the Hamming weight of a vector
#
local n,i,wt;
n:=vectdim(w);
wt:=0;
for i to n do

if evalb(w[i] <> 0) then
wt:=wt+1;

end if;
end do;
RETURN(wt)
end proc:

This illustrates the basic Maple for loop (used for repeating an operation a spec-
ified number of times) and the if statement, used for selecting from two or more
alternatives based on the values stored in variables. The line-by-line breakdown of
what this is doing is as follows:

• The line n:=vectdim(w); computes the number of entries in the vector w.
• The line wt:=0; initializes the variable wt to zero. (What we will do next is

go through the entries in the vector one by one and increase wt by 1 every
time we find a nonzero entry.)

• The next five lines can be thought of as a single Maple command, incor-
porating repetition and selection: (the formatting used above is optional; I
used it for readability).

• The for i to n do <stuff> end do; is a basic loop structure. The
variable i is called the counter for the loop and is used to control how
many times the body of the loop (the <stuff>) is repeated. The end do;
at the end is a marker or separator for the end of the loop body. With this
form, i will start at 1, the body will be executed once, i will be increased
by 1 to 2, the body will be executed again, etc. until i reaches n. If you
wanted to start at some other value of the counter, the more general form

for i from <start> to <finish> do <stuff> end do;
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• The body of a loop can be any sequence of Maple commands. Here the
body of our loop consists of the command if w[i] <> 0 then wt:=wt+1;
end if;. The general form of the if statement is this:

if <condition> then <action1> else <action2> end if;

If the condition is true (at the time that statement is reached in the execu-
tion of the procedure), then action1 is performed once; if it is false then
action2 is performed, also once only. As in our example, the else block
can be omitted. The effect is to do nothing if the condition is false. Here
we add one to the weight if w[i] is not equal to zero, and do nothing if
w[i] is equal to zero. The evalb means to evaluate the expression inside
to a Boolean (true or false).

• The final value of wt is returned as the output of the procedure.

Test your copy of the procedure on several inputs and check that its output is
correct.

Now we have almost all of the ingredients to put together a procedure to compute
the minimum weight of the code generated by a given set of vectors. (Recall, this
is the same as the minimum distance for linear codes). For codes without extra
structure, we will need to use a direct, “brute force” approach. The idea will be
to generate all the nonzero codewords one-by-one in a systematic way, compute
the Hamming weight of each, and remember the smallest weight we have seen.
To generate all the codewords, we will take a row-reduced echelon form generator
matrix G, and multiply on the left by all nonzero vectors in Fk

2 = {0, 1}k, or Fk
p

more generally (k = dimension).
To list all the nonzero vectors in Fk

p, we will use a “trick.” The vectors we want
are in one-to-one correspondence with the integers 1, 2, 3, . . . , pk − 1. One such
correspondence is given by taking the integer and computing the vector of digits in
its base p representation. (For instance, if p = 2, and k = 4, n = 13 corresponds to
[1, 1, 0, 1], since 13 = (1101)2). Maple has a built-in function that takes an integer
and computes almost what we want: convert(i,base,p) gives the base p digits,
but listed with the 1’s digit first, then the p’s digit, then the p2’s digit, etc. and
only up to the last nonzero digit. We need to make a vector from these, “filled out”
with zeroes at the start, and listed in reverse order(!) The two assignments to pw
and w do this in the procedure below.

ell is the length of the list pw, computed using the nops function. nops of a
list is the “number of operands” or number of entries in the list. The next new
Maple command we are using there is the seq command, which builds up terms
in a sequence. For example, seq(0,j=1..k-ell) makes a string of k − ell zeroes,
separated by commas. The seq(pw[ell+1-j],j=1..ell) lists the digits from the
base p form of i in reverse order (when j = 1, we get pw[ell], when j = 2, we get
pw[ell-1], and so forth up to pw[1] when j = ell).

The variable mwt will always have the smallest weight seen so far. It is initialized
to the value of n (the block length) before we get into the loop so that smaller
values will replace n as we find them. For each codeword we generate, we call the
HamWeight procedure to find its Hamming weight. If the weight of that codeword
is less than the smallest weight we have seen so far, then the smallest weight is
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updated accordingly. The minimum weight will be the final value of mwt. Here is
the finished procedure:

MinWeight:=proc(G::array,p::integer)
#
# computes the minimum weight for the code spanned by
# the rows of G modulo p (over F_p)
#
local GM,k,i,j,pw,w,cw,wt,mwt,ell;
GM:=GenMat(G,p);
k:=rowdim(GM);
mwt:=coldim(GM);
for i to p^k-1 do

pw:=convert(i,base,p);
ell:=nops(pw);
w:=vector([seq(0,j=1..k-ell),seq(pw[ell+1-j],j=1..ell)]);
cw:=VMP(w,GM,p);
wt:=HamWeight(cw);
if wt < mwt then

mwt:= wt;
end if;

end do;
RETURN(mwt);
end proc:

Note how the body of this procedure calls the procedures we worked on earlier:
GenMat, VMP,HamWeight. That’s OK as long as those procedures are “known” in
the Maple session where you use this procedure. That will be true as long as you
have read in your file CTL.map in the current session.

Important Note: The method for computing the minimum distance used here is far
too “brute-force” to be practical for codes where p or k large. There can be far too
many codewords to check the weight of each one, one at a time(!)

Assignment 2, part b

(4) Following the examples above for the Maple syntax, develop your own
Maple procedure to compute a parity check matrix for a code code C gener-
ated by the rows of an input matrix G mod p. (This one should not require
any loops or selections.)

(5) Following the examples above for the Maple syntax, develop your own
Maple procedure to compute a row-reduced echelon form generator ma-
trix for the dual code C⊥ of a code C generated by the rows of an input
matrix G mod p. (This one should not require any loops or selections either.
Try to follow what you did “by hand” in problem (2) of this assignment.)

(6) Following the examples above, develop your own Maple procedure to com-
pute a list of all codewords in the code generated by the rows of an input
matrix G mod p. (Hint: Reuse as much of MinWeight as possible!) See the
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worksheet Primer.mws or the on-line help for info about building up lists
one element at a time. Of course you will only want to use this on small
codes (for instance binary codes with k ≤ 7, 8 or so(!)).

(7) As we have said, a big problem in coding theory is to find the best possible
codes for a given n and k. One (totally “brute-force”) way to search for
good codes is to generate random generator matrices and test them. The
Maple command

G:=randmatrix(4,9,entries=rand(0..1));

generates a random 4 × 9 matrix of zeroes and ones, for instance. What
is the largest minimum distance you find for codes over F2 with n = 9
and k = 4 by generating lots of these matrices? You can “automate” this
process using a loop if you are clever.

The best known code for a given n, k over a given field Fq (for small
n and q) can be found by looking at the on-line code tables compiled by
Markus Grassl and maintained at the URL (Internet address)

http://www.codetables.de

Using a web browser, look up the best known code for q = 2, n = 9, k = 4
in the Linear Block Codes query form. How close did you get? Notes:

• Unfortunately, looking for the best codes this way can be a lot like
“searching for a needle in a haystack(!)” The reason is that there are
lots and lots of vector subspaces of dimension 4 in F9

2 (over 3 million
different ones in fact). (Challenge: Can you see a way to count exactly
how many there are?)

• It is possible, though not too likely, for your randomly generated ma-
trix to have rank 3 or less instead of rank 4. Did you take that into
account somehow in your searching? What does the online table say
about minimum distances of codes with n = 9 and k = 3 and k = 2
over F2?

(8) (Challenge) Develop a Maple procedure that computes the SDA (standard
decoding array, or list of coset leaders) used in syndrome decoding a linear
code with given generator matrix. Your input should be a matrix G mod
p whose rows generate the code. The output should be a list of lists, one
for each coset, giving the the syndrome for that coset and minimum weight
elements of that coset. (Hint: You can start out by taking G and row-
reducing to echelon form as in MinWeight above. Then the set of vectors
with a given syndrome is the set of solutions of a system of linear equations
– a coset of the nullspace of the parity check matrix. You can list all the
elements in the coset by the same process you used for part 6 above! )

Hand in the listing of your procedures in your CTL.map file, and a work-
sheet showing output from several tests of each.
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Week 2, Day 1 – The Golay Code. Today, we will study a very famous example
– the (extended) binary Golay code. The extended Golay is a code over F2 with
parameters [n, k, d] = [24, 12, 8], which is the best possible for this n, k from several
viewpoints. The Golay code itself is obtained by deleting one of the entries and has
[n, k, d] = [23, 12, 7]. Here is one construction of the extended Golay code.

• We start from H, the [7, 4, 3] Hamming code with generator matrix:



1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1




and let K be the code obtained from H by reversing the order of the
bits in each codeword. K is also a [7, 4, 3] linear code, and H ∩ K =
{0000000, 1111111}.

• Let H ′ and K ′ be the [8, 4, 4] extended codes obtained from H and K by
adding a parity check bit to each codeword at the right end (making the
number of 1’s even in each case).

• Consider the code C consisting of all words (length 24) having the form
(a + x|b + x|a + b + x) where a, b ∈ H ′ and x ∈ K ′. (This can be seen as a
“souped up” version of the “(u|u + v) construction” we saw last week.)

Assignment 3, part a

(1) Using the built-in Maple linear algebra procedures, and the Maple coding
theory procedures we worked out last week, construct a generator matrix
for the code C described above. (Note: it is not enough just to use the rows
of the generator matrices for H ′, K ′ in the (a + x|b + x|a + b + x) vectors.
Be sure you allow a, b, x to be the zero vector also.)

(2) Verify the dimension and minimum distance of C using our procedures.
(3) The weight enumerator of a code is the vector

(w0, w1, w2, . . . , wn)

in which wi is the number of words in the code with Hamming weight i. The
weight enumerator can also be “packaged” as a polynomial with the wi as
coefficients:

W (s) = w0 + w1s + w2s
2 + · · ·+ wnsn

(same idea as in the generating function of a sequence as studied in combi-
natorics). Write a Maple procedure that computes the weight enumerator
of a code generated by the rows of a given matrix, mod p and add it to
your CTL.map file. Test your procedure on the codes H,K, H ′, K ′ above.
Also test it on the code C described above. Your output should be:

[1, 0, 0, 0, 0, 0, 0, 0, 759, 0, 0, 0, 2576, 0, 0, 0, 759, 0, 0, 0, 0, 0, 0, 0, 1]

(that is, C has 1 word of weight zero, 759 words of weight 8, 2576 words of
weight 12, 759 words of weight 16, and one word of weight 24).

(4) Look around online (using a search engine like Google) to find two different
real-world applications of the (extended) Golay code and describe each in
a few sentences.
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(5) The “unextended” Golay [23, 12, 7] code has another very interesting prop-
erty. How many binary words of length 23 are there in the union of the
Hamming balls of radius 3 centered at the Golay codewords? What does
this say about the union of those balls in F23

2 ?

Some comments:

• Our text gives a different generator matrix for the extended Golay code,
but with no explanation. However, from Exercise 3.7.9 in the text, the code
generated by the matrix given there has the same weight enumerator as our
C! A theorem of Vera Pless (see

http://www.awm-math.org/articles/notices/199107/six/node5.html

for an interesting article by Vera Pless about her experiences as a woman
in mathematical research) says that every binary code with parameters
[n, k, d] = [24, 12, 8] is equivalent to the Golay code C in the following
sense: Two binary block codes of length n are said to be equivalent if there
is some fixed permutation of the entries of vectors in Fn

2 that takes the first
code to the second. Finding the permutation that sets up the equivalence
in this case is not a feasible problem if we use “brute force”, though: 24! is
a large number!

• A code C of length n and minimum distance d = 2t+1 such that the union of
the Hamming balls of radius t centered at the codewords fills out Fn

2 is called
a perfect code. (That is, perfect codes are codes for which the Hamming
bound from last week is achieved.) Perfect codes are exceedingly rare. It
is a theorem that the only perfect codes are codes with the parameters of
Hamming codes, the binary Golay code, and another ternary Golay code,
a code over F3 with parameters [n, k, d] = [11, 6, 5].

Week 2, Day 2,3 – Cyclic Codes. In class we have begun to study cyclic codes
– codes that are taken to themselves by cyclic permutations of the coordinates.
Polynomials over the binary field are an important tool in the study of cyclic codes,
so we will need to begin by adding some basic utilities to our CTL.map files to convert
back and forth between vector and polynomial representations of codewords, and
to build a generator matrix for a cyclic code given its generator polynomial. We
will use these building blocks to look at some examples of cyclic codes, and their
duals.

Assignment 3, part b

(6) Write a Maple procedure called ToPoly that takes as input a vector

[v1, v2, . . . , vn]

of length n representing a codeword, and the name x of a variable (type
symbol), and computes the corresponding polynomial

v1 + v2x + · · ·+ vnxn−1

of degree ≤ n− 1 mod p in the variable given. Test it on several examples.
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(7) Now, go the other way – Write a Maple procedure called ToVector that
takes as input a polynomial of degree ≤ n − 1, the name of the variable,
the integer n, and p, and computes the corresponding polynomial of degree
≤ n − 1. Technical note: There is a built-in Maple function called coeff
that will be useful for picking off the coefficients. Check this out in the
online help. Unfortunately, coeff(p,1) will produce an error. So you need
to do something else to pick off the constant term. One way is to use the
subs function to subsitute a value into a polynomial. After you pick off
each coefficient, put it through Normal( ) mod p to put it in standard form
before filling in the corresponding entry in the vector. Test your procedure
on several examples, including cases where the constant term is zero, where
the polynomial has degree less than n− 1, and so forth.

(8) The following procedure computes a generator matrix for the cyclic code
with generator polyomial g, provided that g is a factor of xn − 1 (the
necessary condition we discussed in class).

CyclicGenMat:=proc(g::polynom,var::symbol,n::integer,
p::integer,reduce::boolean)

#
# finds generator matrix for the cyclic
# code of block length n with generator polynomial g, if
# one exists -- necessary condition is that g must divide
# x^n - 1
#
local k,i,mat;

if Rem(var^n-1,g,var) mod p = 0 then
k:=degree(g);
mat:=ToVector(g,var,n,p);
for i to n-k-1 do

mat:=stackmatrix(mat,ToVector(var^i*g,var,n,p));
end do;
if reduce then

mat:=GenMat(mat,p);
end if;
RETURN(eval(mat))

else
lprint("Error -- generator poly must divide", var^n - 1)

end if
end proc:

Enter this into your CTL.map file. Note: The procedure checks first to see
whether g(x) is a factor of xn− 1, then builds the generator matrix up one
row at a time by finding the coefficient vectors of the polynomials xig(x)
for i = 0, . . . n−d−1, where d is the degree of g (the dimension of the cyclic
code is k = n− d). These rows are shifts of the coefficient vector for g(x).
The parameter reduce is a Boolean (true or false) “switch variable” that
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determines whether the generator matrix will be row-reduced to echelon
form or not.

(9) Using your procedures, find generator and parity check matrices for the
binary cyclic codes of given length n with the given generator polynomials:

(a) n = 15, g(x) = 1+x+x4 What is the minimum distance for this code?
(b) n = 15, g(x) = 1 + x4 + x6 + x7 + x8. What is the minimum distance

of this code?
(c) n = 23, g(x) = 1 + x + x5 + x6 + x7 + x9 + x11 Also find the weight

distribution for this code. What code is this?

(10) We saw in discussion that the dual of a cyclic code is also cyclic. If g(x) is
the generator polynomial of C, then we have an equation xn−1 = g(x)h(x)
for some polynomial h. If dim(C) = k, then deg(g(x)) = n − k, and
deg(h(x)) = k. Hence, we have

xn − 1 = g(x)h(x) ⇒
(x−1)n − 1 = g(x−1)h(x−1) ⇒

xn − 1 = −xn((x−1)n − 1) =
(
xn−kg(x−1)

) (−xkh(x−1)
)

This argument shows that −xkh(x−1) gives a generator polynomial for
the dual code. (Why?) Use this observation to write a Maple procedure
that computes the generator polynomial of the dual C⊥, given as input a
generator polynomial for g(x). The Maple Quo function will be useful here.
Also note that the commands

d:=degree(p,x);
expand(x^d*subs(x=1/x,p));

can be used to compute the polynomial xdp(x−1) where d is the degree of
p. Use your procedure to find the generator polynomials of the duals of the
codes in question 9.

(11) The built-in Maple function factor has an inert form that allows factoring
mod p for a prime – format Factor(f) mod p. Use this command to factor
xn + 1 mod 2 for n ≤ 49 odd. How many different cyclic codes of each of
these block lengths are there?

Week 2, Day 4 – Finite Fields in Maple. We have now introduced the con-
struction of the general finite (Galois) field F2r starting from an irreducible poly-
nomial p(x) of degree r in F2[x]. Maple allows us to compute with these fields by
exactly the same method we have used for our hand calculations in the discussion.
For example suppose we want to work with the field with 8 elements, F23 . There are
two different irreducible polynomials of degree 3 in F2[x], x3 +x+1 and x3 +x2 +1.
Either one can be used and the results will be equivalent, so let’s use the first. If
a is a fixed root of this polynomial, then every element of the field F23 will have
the form c0 + c1a + c2a

2 for some c0, c1, c2 ∈ F2. We will call this the standard
representation of the element.

To do all of this in Maple, we begin with the command
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alias(aa=RootOf(z^3+z+1));

which specifies that from now on in the current session, aa will refer to a (fixed)
root of our irreducible polynomial. (Note: to avoid potential conflicts, I used a
different name for the variable in the polynomial in the RootOf.) Then we can do
arithmetic in the field F23 by using the ordinary +,−, ∗/ operators, but placing the
expression inside Normal( ) mod 2 to reduce to a standard representation of the
element. For example, try entering the following:

Normal((aa+1) + (aa^2+1)) mod 2;
Normal((aa+1) * (aa^2+1)) mod 2;

Normal(1/(aa^2+1)) mod 2;

and check the results by hand using remainders on division by the minimal poly-
nomial of aa.

The elements of our finite fields F2r can now appear in expressions, as entries in
vectors or matrices, as coefficients in polynomials, etc. In fact, many of the proce-
dures in your CTL.map library should work even on matrices and vectors with entries
in F2r . The ones that do not are the ones that used our “trick” for enumerating
the elements of Fpk by using the base p expansions of the integers 0, . . . , pk − 1.

Assignment 3, part c

(12) Using the Factor( ) mod p command, determine all irreducible polyno-
mials in F2[x] of degrees r = 2, 3, 4, 5, 6, 7, 8. (How?) (In this week’s dis-
cussions, you will see a way to prove that there are irreducible polynomials
of every degree in F2[x].)

(13) Since there can be several different irreducible polynomials of degree r in
Fp[x], it is natural to ask whether it matters which one we use to define
a field with pr elements. The answer is no, as you will see in a particular
example in this exercise.

(a) Using Maple, compute 8 × 8 matrices giving the addition and multi-
plication tables in F23 , constructed using the irreducible polynomial
h1(x) = x3 + x+1. (You’ll need to index the rows and columns of the
matrices by the elements of the field in some specific way. Say how
you are doing it.) Identify the primitive elements by the “brute force”
method of determining the multiplicative order of each nonzero ele-
ment. (You’ll see a nice way to understand how this works in Exercise
5.1.18.)

(b) Next, construct 8 × 8 matrices giving the addition and multiplica-
tion tables in F8 constructed using the different irreducible polynomial
h2(x) = x3 + x2 + 1. Identify the primitive elements.

(c) By examining the results of parts (a) and (b), find a one-to-one corre-
spondence between the elements in your two ways of writing F8 that
preserve the sum and product operations in the two fields (such a map-
ping is called an isomorphism of fields. It is a general fact that any
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choice of irreducible h(x) of degree r leads to isomorphic fields F2r , so
we do not indicate which polynomial was used in the notation.

(14) Recall from class that if n is prime to p, the p-cyclotomic coset of s ∈
{0, . . . , n− 1} is the set

Cs = {pjs mod n : j = 0, 1, . . .}
Since p is prime to n, some power of p will be congruent to 1 mod n, and
the elements will start to repeat so we can stop. Write a Maple procedure
called CycCoset that computes the p-cyclotomic coset of a given s mod n
and add it to your CTL.map file. You will probably want to use the while
loop structure for this, since the number of elements of the cyclotomic
coset depends on s and will not be known when your procedure starts.
The general format of the while loop is this: while <condition> do
<action> od;. The condition is tested when the loop is reached. If it is
true the action is done once, and the condition is tested again. If it is true,
the action is performed again. The loop terminates the first time the action
causes the condition to become false. The action is not performed at all if
the condition is false the first time it is tested. See the online help, and the
primer.mws worksheet for more details. Test your procedure thoroughly.

(15) Using your CycCoset procedure, write a procedure MinPoly that returns
the minimal polynomial of the element αs, where α is a primitive element
of the field Fpr (a root of a particular irreducible polynomial of degree r
defining the field).

Week 3, Day 1 – BCH Codes. The BCH (Bose-Chaudhuri-Hocquenghem)
codes are cyclic codes constructed using the algebra of the fields Fpr . Their main
interesting feature is that we can design their minimum distance to be as large
as we like by (picking n sufficiently big and) specifying the form of the generator
polynomial. In the lab today, we will develop a Maple procedure to specify the
general BCH codes from a previous discussion. Here’s the idea once again:

(1) Let β be a primitive element of the field Fpr (as always, constructed using
some particular irreducible polynomial of degree r with β as a root). Usu-
ally we take p = 2, but the construction works in essentially the same way
for any prime p.

(2) We can define the general BCH code as follows. Given any δ ≥ 1, let
BCH(pr, δ) be the code with n = pr − 1 consisting of polynomials c(x)
(degree ≤ pr − 2) such that

c(β) = c(β2) = · · · = c(βδ−1) = 0.

(3) So we take the generator polynomial of g(x) to be the lcm of the minimal
polynomials of β, β2, . . . , βδ−1 in Fp[x]. (Note: the coefficients of g(x) are
all in Fp.)

(4) With p = 2, we can say more. Since the 2-cyclotomic coset of an odd integer
j contains 2j, when we work over the binary field, it is enough to take the
least common multiple of the minimal polynomials of β, β3, . . . , βo, where
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o is the last odd number less than or equal to δ − 1. This does not work if
p 6= 2, however.

(5) The minimum distance of BCH(pr, δ) is at least δ. This is called the
“designed distance” of the BCH code. For binary BCH codes, if δ is odd
then d ≥ δ and if δ is even d ≥ δ + 1, since the even number δ is also in the
union of the cyclotomic cosets of the powers of β that we know are roots
of g(x).

Assignment 4, part a

(1) Write a Maple procedure that implements the above method to compute
the generator polynomial for BCH(pr, δ) over Fp, using some particular
irreducible polynomial h of degree r to construct the field Fpr . Test your
procedure by computing the generator polynomials of the binary codes
BCH(24, 3), BCH(24, 5), and BCH(25, 7). In each case, determine gener-
ator matrices using our general procedures for cyclic codes from last week.
Compute the weight enumerators for your codes to check that the minimum
distance d ≥ δ. The last computation will take a while by our “brute force”
method for finding the weight enumerator. Do you see why?

(2) When we form the lcm of the minimal polynomials of β, β2, . . . , βδ−1 in
F2[x] the roots of the resulting polynomial are β` where ` is any element
of C1 ∪ C2 ∪ C3 ∪ · · · ∪ Cδ, where Cj is the p-cyclotomic coset of j mod
n = 2r − 1. This union of cyclotomic cosets can have strings of consecutive
elements of {1, 2, . . . , n− 1} longer than the string {1, 2, . . . , δ − 1}. Using
Maple, find an explicit binary case where this happens. (Hint: there’s an
interesting one – one where the minimum distance is quite a bit larger than
expected – with n = 31.)

(3) In all of your examples in question 2, the weight enumerator is (i.e. should
be!) symmetric about (n−1)/2 – that is: if there are A` words of weight `,
then An−` = A`. Why is this true? Will it always happen for binary BCH
codes? (Find a proof why this has to happen for binary BCH codes or a
counterexample where it fails.)

Week 3, Day 2 – Reed Solomon Codes. We now come to the Reed-Solomon
codes. While the BCH codes are codes over the prime field Fp constructed using the
algebra of Fpr , the Reed-Solomon codes are actually vector subspaces of a vector
space over the larger field Fpr . The entries of Reed-Solomon codewords can be any
elements of the larger field. However, these codes are also cyclic, so they can be
defined by generator polynomials. We will use the code RS(pr, δ) defined as the
cyclic code over the field Fpr with generator polynomial

g(x) = (x− βm+1)(x− βm+2) · · · (x− βm+δ−1).

We have n = pr− 1, k = pr− δ (but careful, this is the dimension as a vector space
over the field Fpr , d = δ. One important property of the Reed-Solomon codes is
that they all reach the Singleton bound from Week 1: d = n − k + 1. In other
words, they have the maximum possible d for the given n and k according to the
Singleton bound(!). Codes with this property go by the name MDS codes in “the
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coding theory biz.” (MDS stands for the rather inelegant phrase maximum distance
separable.)

Assignment 4, part b

(4) Write a procedure that takes inputs p, r, δ,m, a particular irreducible poly-
nomial of degree r over Fp to construct Fpr , and the name of a variable,
and computes the generator polynomial for RS(pr, δ). This will be a poly-
nomial with coefficients in Fpr . Use your procedure to do Exercise 6.2.9
parts c,d,e from the text.

(5) Reed-Solomon codes over F2r are often used in the following way. Each
component of the Reed-Solomon codewords is an element of F2r . We use
the polynomial h(β) of degree r to construct this field, so every element is
uniquely represented by a remainder modulo h, i.e. by a linear combination
of the form c0+c1β+ · · ·+cr−1β

r−1, where ci ∈ F2 = {0, 1}. Picking off the
coefficients to make a vector (c0, . . . , cr−1), we get from each codeword of
the RS code a binary word of length n′ = r(2r − 1). We call this the binary
image of the Reed-Solomon code. It is the binary words from the binary
image that are often transmitted or stored when Reed-Solomon codes are
employed in practice. (One reason for this is that such codes have good
burst-error correction capabilities. Even a long string of consecutive bit
errors may affect only a relatively small number of entries considered as
elements of F2r . Given a generator polynomial for a Reed-Solomon code
over F2r , write a Maple procedure that produces a corresponding binary
generator matrix for the binary image code. You may want to start first by
constructing a conversion procedure that takes an element of F2r and finds
the corresponding binary vector of length r.

(6) Given the Reed-Solomon code C = RS(2r, δ), we can construct other codes
that reach the Singleton bound by an operation called shortening. (Codes
of this type are used, for instance, in the encoding of audio information on
CD’s(!)) Let s be an integer. The shortened Reed-Solomon code C(s) is
obtained by
• Intersecting C with the vector subspace of F2r−1

2r consisting of vectors
with zeros in the last s components, then

• Deleting the last s components in the resulting codewords.
There is a discussion starting at the bottom of page 133 in the text showing
how to obtain a generator matrix for the shortened code. (Shortened codes
are usually not cyclic so they will not have generator polynomials.) Imple-
ment this method in a Maple procedure. Use it to construct a generator
matrix for the shortened code C(4) for C = RS(24, 5). Use the polynomial
h = x4 + x + 1 to construct F24 . What are the parameters n, k, d for the
shortened code?

Week 3, Days 3,4 – Encoding and Decoding Reed-Solomon Codes. So far,
we have concentrated on the construction of codes with desirable parameters n, k, d.
In practice, in order for a code with good parameters to be attractive for most
applications, it must also be true that there are efficient encoding and decoding
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algorithms available. Reed-Solomon codes meet both of these criteria and we will
see both a polynomial-division encoding method, and the Euclidean Algorithm
(Sugiyama) decoding method for these codes.

Assignment 4, part c

(7) (Encoding) In question 1 of the last section of lab problems, you wrote a
Maple procedure to compute the generator polynomial for RS(pr, δ) (with
m = 0). Now we will use that generator polynomial to produce a very
“compact” encoding function for RS(pr, δ). The RS code has n = pr −
1, k = pr − δ, d = δ. We place the information symbols c1, . . . , cpr−δ in the
coefficients of the high-degree terms in a polynomial:

f = c1x
pr−2 + c2x

pr−3 + · · ·+ cpr−δx
δ−1

The generator polynomial g has degree δ − 1. Hence if we use polynomial
division to write f = qg + r, the remainder will have degree δ − 2 or less.
Moreover, the difference f − r is a multiple of g, so it is a codeword. Hence
our encoding function is E(f) = f −r, where r is the remainder on division
by g. Note that, as would be the case for a the vector-matrix product
encoder with a generator matrix in the row-reduced echelon form [I|B],
E(f) contains the information symbols in the high-degree terms. Encoders
with this property are called systematic encoders. Write a Maple procedure
that implements this process. Build up the polynomial f one term at a time
from the information symbols cj , j = 1, . . . , pr − δ. The built-in function
Rem can be used to compute the desired remainder mod p.

(8) For the Euclidean algorithm (Sugiyama) decoder for the RS(pr, δ) code
with m = 0, for each received word w we need first to compute the syn-
dromes sj = w(βj), j = 1, . . . , δ − 1 (using the polynomial form of the
codeword). Then these are used as coefficients in the “syndrome polyno-
mial”:

s(x) = s1 + s2x + · · ·+ s2tx
2t−1

(where 2t = δ − 1). Write and test a Maple procedure that takes as pa-
rameters a received word (any word of length n = pr − 1), the integers
δ, p, and the irreducible polynomial used to construct Fpr , and returns the
corresponding syndrome polynomial.

(9) In the class folder, you will find files containing Maple source code for two
additional procedures implementing the subsequent steps of the generalized
Euclidean algorithm. The first, called RSEAErrLoc, takes a syndrome poly-
nomial and applies the main loop in the Euclidean algorithm to find the
“reversed” error locator polynomial, Σ(x). The second, called RSEAErrVal
applies the “Forney formula” to compute the error values, if the error pat-
tern is correctable. It returns the vector that should be added to the received
word to obtain the nearest codeword, or the value FAIL if the error has too
large weight.

The procedure headings for these two procedures look like this:
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RSEAErrLoc:=proc(syndromepoly::polynom,delta::integer,
irred::polynom, p::integer)

and

RSEAErrVal:=proc(errloc::polynom,erreval::polynom,
delta::integer,irred::polynom,p::integer)

Copy and paste these procedures into your CTL.map file. Write a Maple
procedure RSBMDecode that takes a received word, the integers p, δ and
the irreducible polynomial used to construct Fpr , and decodes the received
word. Test it by encoding several different information strings to obtain
codewords for the RS(24, 3), RS(24, 5), and RS(24, 9) codes. Add different
error vectors to obtain received words, then apply your decoding procedure
to see that the correct codeword is recovered. Also see what happens if you
add on an error vector that has too large weight.


