
MSRI-UP 2009 – SEMINAR IN CODING THEORY –
DISCUSSIONS

1. General Information and Goals

The discussion meeting each day of the seminar will be devoted to preliminary
work on an assigned list of problems in groups of three. I expect that each group
will need to continue work on the assignment during the afternoon and the evening.
The solutions will be due at the next meeting of the seminar.

The goals of this part of MSRI-UP are to practice using the concepts we have
discussed in the lectures, to work through many examples, and to practice working
on mathematics in groups like the research groups later in the program.

A few words about this way of working are probably in order. In these meetings,
we will all be aiming for collaborative learning – that is for an integrated group effor
in analyzing and attacking the discussion questions. The ideal is for everyone in
each of the groups to be fully involved in the process. The idea is that, by actively
participating by talking about the ideas yourself in your own words, you can come
to a better first understanding of what is going on than if you simply listen to
someone else talk about those ideas.

However, it must be said that to get the most out of this approach, you may
need to adjust some of your thinking. In particular,

• This is not a competition in any sense. You and your fellow group members
are working as a team, and the idea is to have everyone understand what
the group does fully.

• At different times, it is inevitable that different people in the group will have
a more complete grasp of the questions at hand and others will have a less
complete grasp. Dealing with this in a group setting is excellent preparation
for real work in a team; it also offers opportunities for significant educational
experiences.

• If you feel “totally clueless” at some point, your role will be to ask questions
and, if necessary, pester the others in your group until the point has been
worked out to your full satisfaction. (Don’t forget–the others in the group
may be jumping to unwarranted conclusions and your questions may save
the group from pursuing an erroneous train of thought.)

• On the other hand, when you think you really see how something works,
you may need to explain it carefully to others. (Don’t forget–the absolutely
best way to make sure you really understand something is to try to explain
it to someone else(!) If you are skipping over an important point in your
thinking, it can become very apparent when you set out to explain your
thinking to the other members of your team.)

In short, everyone has important things to contribute, and everyone will contribute
in different ways at different times.

Date: May 13, 2009.

1



2 MSRI-UP 2009 – SEMINAR IN CODING THEORY – DISCUSSIONS

Week 1 – Beginnings of Coding Theory

Day 1 – Basic Notions. We have introduced the basic language of binary block
codes (subsets of Fn

2 , so the codewords consist of strings of some fixed number n of
0s and 1s).

A) Recall that the Hamming distance d(v, w) is the number of positions in
which the words differ. Show that the Hamming distance has the usual
properties of a metric, or distance function:

1) For all v, w, d(v, w) ≥ 0 and d(v, w) = 0 if and only if v = w.
2) For all v, w, d(v, w) = d(w, v).
3) For all u, v, w, d(u,w) ≤ d(u, v) + d(v, w) (a triangle inequality).

B) Determine the minimum distance of each of the following codes:

1) C = {1010, 1100, 0011}
2) C = {000000, 111000, 000111, 111111}
3) C = the code obtained from Fn

2 by adding a parity check digit. (That
is, if w ∈ Kn we have w0 in C if w has an even number of 1’s and w1
if w has an odd number of 1’s.)

C) Suppose a binary symmetric channel with reliability p = 1 − 10−3 = .99
is used to communicate words of length 11 bits at a rate of 105 bits per
second.

1) With no error control at all, how many words per second would we
expect to be transmitted incorrectly? Explain.

2) Now suppose that a parity check digit is added to all words (as in
question B part 3), giving codewords of length n = 12, so that a single
bit error (or any odd number of bit errors can be detected if they
occur. How many words per second would we expect to be transmitted
incorrectly but not detected? Indicate whether your answer is exact
or an approximation, and explain?

3) We will see later in the seminar that it is possible to encode words
of length 11 to codewords of length 15 (by adding 4 additional parity
check digits) in such a way that the resulting code has minimum dis-
tance 3. Hence a nearest-codeword decoder can correct any single bit
error in a received word. However, if there are two or more bit errors
in the received word, then the decoding will be incorrect. Assuming
we have a decoder (we will see how to construct one), how many words
per second would we expect to be decoded incorrectly?

4) Discuss the tradeoffs in efficiency and reliability of communication in
the scenarios from parts 1,2,3.

D) Error control in the form of check digits is often used for information using
nonbinary alphabets. A case you may have run into is the ISBN number
used by publishers to identify books. For instance, the ISBN number of the
HHLLPRW text we are using is 0824704657 (see the barcode on the back
cover). All ISBN’s have the form d1d2 · · · d9; d10 where the first 9 digits are
ordinary decimal digits 0–9 and are the actual identifier for the book. The



MSRI-UP 2009 – SEMINAR IN CODING THEORY – DISCUSSIONS 3

last digit d10 is a check digit that is added to make the number

(1.1) d1 + 2d2 + 3d3 + · · ·+ 9d9 + 10d10

evenly divisible by 11. (In cases where d10 would need to be 10 to make
this work, an X is used instead of a digit.)

1) Check that (1.1) is divisible by 11 for the ISBN number from our book.
2) Explain why given any d1, . . . , d9, there is always an integer d10 ∈
{1, 2, . . . , 10} such that (1.1) holds.

3) Show that the ISBN code detects any one-digit error in an ISBN num-
ber.

4) Probably the most common error human beings make in copying long
numbers is to transpose (interchange) two digits (for example, writing
0827404657 instead of 0824704657–do you see where the transposition
occurred?). Show that the ISBN code also detects any transposition
error of one pair of digits. Is it always possible to correct a transposi-
tion error in an ISBN number? Why or why not?

E) In addition to the situation we discussed in class where an error in a received
word changes a 0 to a 1 or a 1 to a 0, there are also instances in which a
digit in a received word is simply not recognizable as either a 0 or a 1. In
this case, coding theory people say that an erasure has occurred.

1) Show that if a code has minimum distance d and a combination of t bit
errors and e erasures occurs in a received word, then there is a unique
closest codeword to the received word if 2t + e < d.

2) Which are easier to correct, errors or erasures? Why?

Day 2 – Linear Codes. Most of the codes we will work with this summer are
linear codes–codes where the set C of codewords is a vector subspace of Fn

2 . We
will always the following notation:





n is the block length
k is the dimension, or information bits per codeword
d is the minimum distance
G is a generator matrix (rows form a basis for C

H is a parity check matrix with GH = 0

A) For each of the following sets, give the parameters [n, k, d] of the linear code
C = 〈S〉, give a generator matrix, a parity check matrix, and find a basis
for the dual linear code C⊥.

1) S = {110100, 101101, 110111}
2) S = {1111111, 0101010, 1010101, 1110011}

B) Prove Theorem 2.3.19 from the text. (Hint: think about building up the
basis one vector at a time.)

C) Exercise 2.6.12 from the text.

D) Prove Theorem 2.7.6 from the text.



4 MSRI-UP 2009 – SEMINAR IN CODING THEORY – DISCUSSIONS

Day 3 – Syndrome Decoding. A big advantage of linear codes (as opposed
to general codes) is that they admit a simpler decoding method, called syndrome
decoding. This is based on the fact that for a linear code with parity check matrix H,
if c is a codeword and e is an error vector, then (c+e)H = cH +eH = 0+eH = eH.
This has the following important interpretation: the information needed to correct
the error e is contained in the syndrome s = eH, which depends only on the error,
and not on the actual codeword. The syndromes are in one-to-one correspondence
with the cosets e + C, and for errors e of weight at most t = bd−1

2 c, the likeliest
error is the minimum weight vector e in e + C (the “coset leader”).

A) Prove Theorem 2.10.3 from the text.

B) Prove Theorem 2.11.4 from the text.

C) Exercise 2.10.7, part c from the text.

D) Exercise 2.10.8, parts a,b from the text.

E) Exercise 2.11.21 from the text.

Day 4 – Bounds on Parameters of Codes, Hamming Codes. “Good” codes
are ones for which the number of codewords (hence k) is big, but the minimum
distance d is also large, so many errors can be detected or corrected. Unfortunately,
it is not easy to achieve these goals simultaneously–these properties are mutually
contradictory to some extent. So the search for good codes is a “balancing act,” so
to speak. We have introduced several bounds on the parameters of codes that give
some limitations on what can be achieved:

• Hamming (sphere packing) bound : If C is a code of length n and minimum
distance d = 2t + 1 or d = 2t + 2, then

|C| ≤ 2n

∑t
i=0

(
n
i

)

(this is valid for nonlinear codes too).
• Singleton bound : If C is a [n, k, d] linear code, then d ≤ n− k + 1.
• Gilbert-Varshamov bound : There exists a linear [n, k, d] code if

2n−k >

d−2∑

i=0

(
n− 1

i

)
.

These (as well as a number of other bounds) essentially give restrictions on how
good codes can be. One important thing to realize is that it is not the case that
codes achieving the bound (i.e. making the inequality an equality) always exist.
Sometimes the bounds are not “tight.”

A) Exercises 3.1.5 and 3.1.18 from the text.
B) Exercise 3.1.19 from the text.
C) Exercise 3.3.5 from the text.
D) Exercise 3.3.7 from the text (see §2.8.)
E) The form of the Gilbert-Varshamov inequality given Theorem 3.1.13 was

proved by adding rows one by one to produce a parity check matrix for
a code of dimension k. An alternate approach is to consider adding basis
vectors (or rows of the generator matrix) one by one.



MSRI-UP 2009 – SEMINAR IN CODING THEORY – DISCUSSIONS 5

1) Show that if this approach is taken, then an [n, k, d] code exists as long
as

2n−k+1 >

d−1∑

i=0

(
n

i

)
.

2) Is the inequality from part 1 stronger or weaker than the Gilbert-
Varshamov bound given above? (You may need to experiment a bit
with different n, d combinations.)

Week 2 – Cyclic Codes, General Finite Fields

Day 1 – Begin Cyclic Codes. Many of the codes that are used in applications
such as the CD audio system are linear codes with “additional structure” that
allows for efficient encoding and decoding. One important example is the class of
cyclic codes. We will focus mainly on these for the remainder of the seminar. The
most basic way to define a cyclic code is this: a linear code is cyclic if the set of
codewords is closed under cyclic permutations of the codeword entries. We have
seen that the algebra of polynomials is very useful to describe these codes. This
is true because if we make the digits of a codeword c of length n the coefficients
of a polynomial c(x) of degree ≤ n − 1, then a cyclic permutation is the same as
computing x · c(x), then taking the remainder on division by xn + 1. We have also
seen that cyclic codes are determined by their generator polynomials – the generator
polynomial is the polynomial corresponding to the nonzero codeword of smallest
degree. Today, we want to begin by practicing on some polynomial arithmetic with
coefficients mod 2, then apply this to study some cyclic codes.

A) Exercises 4.1.19 b,c, 4.1.20 b, 4.1.21 b,c from the text.

B) Exercises 4.1.22 from the text.

C) Exercise 4.2.20 c,g (Use the polynomial forms of the codewords and the
Euclidean Algorithm for the gcd. See Appendix A in the text and the class
notes).

D) Exercise 4.2.22 from the text. (Note 〈S〉 is cyclic in each case.)

Day 2 – More on Cyclic Codes. Continuing our study of cyclic codes, we
want to consider how to find generator polynomials for all cyclic codes. The most
important fact here is the generator for a cyclic code of length n must be a divisor
of xn + 1. Hence we will study the irreducible factorization of xn + 1 in F2[x]. We
will always assume F2 = {0, 1} and n is odd in the following description of binary
cyclic codes.

Cyclic codes can also be described by their idempotent polynomials. An idempo-
tent is a polynomial p(x) satisfying (p(x))2 ≡ p(x) mod xn + 1. The basic idempo-
tents are in one-to-one correspondence with the cyclotomic cosets in {0, 1, 2, . . . , n−
1}. The cyclotomic coset Ci is the set

Ci = {2ji mod n | 0 ≤ j ≤ r − 1}



6 MSRI-UP 2009 – SEMINAR IN CODING THEORY – DISCUSSIONS

where 2r ≡ 1 mod n (this is where the hypothesis that n is odd is used). For
instance, with n = 15, we have cyclotomic cosets

C0 = {0}
C1 = {1, 2, 4, 8} = C2 = C4 = C8

C3 = {3, 6, 12, 9} = C6 = C12 = C9

C5 = {5, 10} = C10

C7 = {7, 14, 13, 11} = C14 = C13 = C11

and the corresponding basic idempotents are

p0(x) = 1, p1(x) = x + x2 + x4 + x8, p3 = x3 + x6 + x12 + x9, etc.

The other idempotents are obtained as linear combinations

a0p0(x) + a1p1(x) + a3p3(x) + a5p5(x) + a7p7(x)

for ai ∈ F2. A generator polynomial for the cyclic code with idempotent p(x) can
be obtained by computing the gcd of p(x) and xn + 1.

A) Verify that x15 + 1 = p0(x)p1(x)p3(x)p5(x)p7(x) using the polynomials
above.

B) Exercises 4.3.4, 4.3.5 b,d, 4.3.6 from the text.

C) Exercise 4.4.15 a,b,c,e from the text.

D) Let g(x) be the generator polynomial of a binary cyclic code C of length
n, and let 1 + xn = g(x)h(x).

1) Prove that the dual code C⊥ is also cyclic.
2) What does a generator polynomial for C⊥ look like? Try some exam-

ples using the data generated in problem B and see if you can find the
pattern. This is also stated in the text, but try to see the pattern for
yourself before you look for it.

Day 3 – Finite Fields. So far, we have considered only binary codes (that is codes
over the binary alphabet F2 = {0, 1}). These are probably the most important
codes in applications. However, to construct binary codes with good properties, it
is helpful to use the properties of other finite fields as well. Moreover, codes over
alphabets that are finite fields of size > 2 are also of interest. In particular, the
BCH and Reed-Solomon codes use the properties of these larger fields. All of the
finite fields we will use contain F2 = {0, 1}.

Recall the general construction from class. Given an irreducible polynomial p(x)
of degree r, the set of remainders on division by p(x) forms a field under the usual
sum of polynomials and the product given by multiplying the remainders and taking
the remainder of the product.

A) Exercise 5.1.15 (give the addition and multiplication tables) and 5.1.17 a,c,d

B) Exercise 5.1.16 from the text.

C) Exercise 5.1.18 from the text.

D) Exercise 5.2.8 from the text.



MSRI-UP 2009 – SEMINAR IN CODING THEORY – DISCUSSIONS 7

E) Let Nr be the number of irreducible polynomials of degree r in F2[x].

(a) Show that

1
1− 2t

=
∞∑

n=0

2ntn =
∞∏

r=1

1
(1− tr)Nr

.

(Hint: The left side of the second equality gives the “generating func-
tion” for the sequence An = 2n which counts the number of monic
polynomials of degree n. The other side counts the polynomials in a
different way. You will need to show what the relationship is.)

(b) (Challenge Bonus Problem) Deduce that there are monic polynomials
of all degrees in F2[x], hence finite fields of order 2r, for every r ≥ 1.

Day 4 – Hamming Codes Reconsidered; BCH Codes. We have now seen
that a Hamming [2r − 1, 2r − r − 1, 3] code can be constructed as a cyclic code
with generator polynomial equal to the minimal polynomial equal to the minimal
polynomial of a primitive element of a field of order 2r. Hamming codes always
have d = 3, so they only correct 1 bit error in each received word. One of the
main reasons for following this train of thought is so we can see how to construct
codes with larger d in a systematic way. The resulting codes are called BCH codes
(after their discoverers – Bose, Chaudhuri, and Hocquenghem). In class we saw the
construction of BCH codes with d ≥ 5. In problem C below, you will see a way to
construct such codes with even larger d.

A) Exercises 5.3.8 and 5.3.9 from the text.

B) Exercise 5.4.2 from the text.

C) In class, we saw the construction of [2r− 1, 2r− 2r− 1,≥ 5] BCH codes. In
this exercise, you will see how this construction can be generalized to yield
BCH codes with designed distance δ as large as we like (at least provided r
is large enough). The actual minimum distance will be bigger than or equal
to δ, so d ≥ δ. The most direct way to give the definition is this. Given
δ = 2t + 1, choose r so that 2r−1 > t, and let β be a primitive element
of the field F2r constructed using some irreducible polynomial of degree r.
Let ms(x) be the minimal polynomial of βs. Then we define BCH(2r, δ)
to be the binary cyclic code of length n = 2r−1 with generator polynomial

g(x) = lcm(m1(x), m3(x), . . . , m2t−1(x)).

In some cases, a power βj might be a root of one of the previous factors. If
that happens, then the lcm will already contain the minimal polynomial of
that βj , so the number of factors could be smaller than indicated above.

1) Show that the dimension of BCH(2r, δ) is k = 2r − 1 − deg(g(x)) ≥
n− rt.

2) Show that the roots of g(x) contain 1, β, β2, . . . , β2t.
3) Deduce that the minimum distance of BCH(2r, δ) is at least δ. (Hint:

Consider the rows of a parity check matrix and use Vandermonde
determinants.)

D) Generalize the previous problem to show the following result called the
BCH bound : Let C be a cyclic code of length n over F2. Let F2r be the



8 MSRI-UP 2009 – SEMINAR IN CODING THEORY – DISCUSSIONS

smallest extension field of F2 containing a primitive nth root β of 1, and
assume that the set of roots of the generator polynomial of C contains a
string of δ − 1 consecutive powers of β:

βm+1, βm+2, . . . , βm+δ−1.

Then C has minimum distance ≥ δ.

Note: The actual parameters of BCH codes are somewhat “unpredictable, but in
a good way” (!) Namely, it is possible for the dimension to be strictly larger than
we expect (can you see how that might happen?) Moreover, the actual minimum
distance d can also be strictly larger than the designed distance δ. We will see an
explicit example where this happens in the lab.

Week 3 – Reed-Solomon Codes and Decoding

Day 1 – Reed Solomon Codes. The Reed-Solomon codes are closely related to
BCH codes. But unlike BCH codes, they are codes over the alphabet F2r for some
r > 1. A BCH code is a subfield subcode of a Reed-Solomon code – the subset of
the Reed-Solomon codewords containing only entries from the subfield F2 = {0, 1}.
The parameters of a Reed-Solomon code are also much more predictable than those
of BCH codes.

The Reed-Solomon codes RS(2r, δ) are the cyclic codes over F2r with generator
polynomial of the form

(1.2) g(x) = (x + βm+1)(x + βm+2) · · · (x + βm+δ−1)

for some m. Almost always, we will take m = 0, so the zeroes of the generator
polynomial are the consecutive powers β, β2, . . . , βδ−1 of the primitive element β.
The parameters of RS(2r, δ) are

[n, k, d] = [2r − 1, 2r − δ, δ].

Note that in particular d = n − k + 1 so the Singleton bound is achieved. Reed-
Solomon codes are important examples of MDS codes (this is the name given to
codes achieving the Singleton bound).

There is a second, also very illuminating, way to construct these codes as well.
For the code with m = 0 above, let Lk denote the vector space of polynomials of
degree < k in F2r [x]. Consider the evaluation mapping

ev : Lk −→ F2r−1
2r

f 7−→ (f(1), f(β), . . . , f(β2r−2)).

The image of ev is the Reed-Solomon code RS(2r, 2r−k) with parameters [n, k, d] =
[2r−1, k, 2r−k]. Note: In the notation used in our text, we are taking S = F2r \{0}
here. We can also consider smaller subsets S ⊂ F2r \ {0} as the set of points where
the polynomials are evaluated. The resulting codes are also called Reed-Solomon
codes. The two actual RS codes used in the CD audio system are formed in this
way. (The CS audio code contains quite a few ingenious technical “tricks” as well
– the RS codes are not the whole story!) This way of constructing Reed-Solomon
codes has been vastly generalized to produce many other interesting families of
codes, including the toric codes that figure in several of the research project topics.

A) Exercise 6.1.6 from the text.
B) Exercise 6.2.8 from the text.



MSRI-UP 2009 – SEMINAR IN CODING THEORY – DISCUSSIONS 9

C) Exercises 6.4.16 and 6.4.17 from the text.
D) Show directly that the image of the evaluation mapping ev coincides with

the Reed-Solomon code. Hint: Consider the codewords corresponding to
the basis {1, x, x2, . . . , xk−1} for Lk and show that, in polynomial form,
each is divisible by g(x) from (1.2). But be careful, this is tricky because
polynomials are being used in these constructions in two different ways,
and you will need to keep them straight in your thinking!

Days 2, 3–The Euclidean Algorithm (Sugiyama) Decoder. One of the rea-
sons that Reed-Solomon codes have been used frequently for real-world applications
is that several very efficient algebraic decoding algorithms exist for them. (These
methods are much more efficient than the syndrome decoding we discussed in the
first week would be, for instance. We will consider the method called the Euclidean
algorithm (Sugiyama) decoder. (Our text discusses a different method called the
Berlekamp-Massey algorithm which is comparable in efficiency but somewhat more
complicated to describe.) However, it is interesting that both of these methods
start from (essentially) the same key equation. Let δ = 2t + 1 and consider the
RS(2r, δ) code (taking m = 0 in the text’s formulas). Given a received word w(x)
with a error of weight t or less, we begin by computing the error syndromes

s1 = w(β), s2 = w(β2), . . . , s2t = w(β2t)

and forming the syndrome polynomial

Σ(x) = s1 + s2x + · · ·+ s2tx
2t−1.

(Recall that the generator polynomial for RS(2r, δ) has β, β2, . . . , βδ−1 = β2t as
roots. So si = 0 for all i if and only if w(x) is a codeword.)

The Euclidean algorithm decoder produces polynomials Λ(x), Γ(x), Ω(x) satisfy-
ing the so-called key equation for decoding

(1.3) Λ(x)Σ(x) = Ω(x) + x2tΓ(x).

The polynomial

Λ(x) =
τ∏

i=1

(1− βeix)

has degree τ ≤ t and is called the error-locator, since its roots x = β−ei determine
the error locations. Ω is the error-evaluator and can be used to determine the error
values. Ω(x) has degree ≤ deg Λ(x)− 1 and gcd(Λ(x), Ω(x)) = 1.

Note: The notation used in the text for the key equation is different – our Λ(x)
is called σR(x) and our Σ(x) is a shifted version of the book’s s(x), so the other
polynomials in our version are slightly different. It is unfortunately pretty rare that
mathematicians settle on a completely standard notation for anything. So it pays
to get proficient at translating back and forth when you compare different sources(!)

A) For each of the following collections of syndromes, carry out the Sugiyama
algorithm to find the error locator and error-evaluator, then determine all
roots of the error locator by Chien search and the error values by the Forney
Formula (if possible). If you cannot determine the error locations, say what
prevented you from completing the algorithm.

1) s1 = β, s2 = β2, s3 = β10, s4 = β6, s5 = β5, s6 = β7, s7 = β6

2) s1 = β7, s2 = β13, s3 = 0, s4 = β10, s5 = β11, s6 = β2, s7 = β4



10 MSRI-UP 2009 – SEMINAR IN CODING THEORY – DISCUSSIONS

B) Show that if Λ′(x),Ω′(x), Γ′(x) are another triple of polynomials satisfying
(1.3) for the same Σ(x) and deg Λ′(x) ≤ t, deg Ω′(x) ≤ deg Λ′(x) − 1, and
gcd(Λ′(x), Ω′(x)) = 1, then there is a nonzero constant γ ∈ F2r such that
Λ′(x) = γΛ(x), Ω′(x) = γΩ(x), and Γ′(x) = γΓ(x).


