

Figure 1: The probability histogram

The plot above shows the probability histogram for a Poisson random variable Y with $\lambda=2$. The heights of the bars are

$$
\begin{array}{r}
P(X=0)=\frac{2^{0} e^{-2}}{0!} \doteq .1353 \quad P(X=1)=\frac{2^{1} e^{-2}}{1!} \doteq .2707 \\
P(X=2)=\frac{2^{2} e^{-2}}{2!} \doteq .2707 \quad P(X=3)=\frac{2^{3} e^{-2}}{3!} \doteq .1804 \\
P(X=4)=\frac{2^{4} e^{-2}}{4!} \doteq .0902 \quad P(X=5)=\frac{2^{5} e^{-2}}{5!} \doteq .0361 \\
P(X=6)=\frac{2^{6} e^{-2}}{6!} \doteq .0120 \\
P(X=8)=\frac{2^{8} e^{-2}}{8!} \doteq .0009 \quad P(X=7)=\frac{2^{7} e^{-2}}{7!} \doteq .0034 \\
P(X)=\frac{2^{9} e^{-2}}{9!} \doteq .0002 \\
P(X=10)=\frac{2^{10} e^{-2}}{10!} \doteq .00004
\end{array}
$$

In this case, unlike the binomial probability histogram, the total area of these boxes is not exactly one. In fact the sum of the areas of these 11 boxes is . 9999916916 , slightly less than 1 . The reason is that

$$
P(Y=k)=\frac{2^{k} e^{-2}}{k!}>0
$$

for all $k \geq 0$.

