College of the Holy Cross, Fall Semester 2017
 MATH 243 - Mathematical Structures, section 2
 Solutions for Exam 3 - December 7

I. (25) Give the statement and proof of "Fermat's Little Theorem."

Solution: The statement is that if p is prime in \mathbb{Z} and $\operatorname{gcd}(a, p)=1$. Then $a^{p-1} \equiv 1 \bmod p$.
Proof: Since $\operatorname{gcd}(a, p)=1$, the class $[a] \in \mathbb{Z} / p \mathbb{Z}$ has a multiplicative inverse. We claim this implies that the mapping $f: \mathbb{Z} / p \mathbb{Z} \rightarrow \mathbb{Z} / p \mathbb{Z}$ defined by $f([x])=[a][x]$ is injective and surjective. Injectivivity follows because if $f([x])=[a][x]=[a]\left[x^{\prime}\right]=f\left(\left[x^{\prime}\right]\right)$, then we can multiply both sides of this equation by $[a]^{-1}$ to obtain $[x]=\left[x^{\prime}\right]$. This shows that f is injective. Then, since $\mathbb{Z} / p \mathbb{Z}$ is finite, f must be surjective as well. Now $f([0])=$ [0]. Hence f must map the nonzero classes in $(\mathbb{Z} / p \mathbb{Z})^{\times}$to themselves it follows that the $[a],[2 a], \ldots,[(p-1) a]$ are the same as $[1],[2], \ldots,[p-1]$, just in a different order. But then it follows that

$$
\begin{aligned}
(p-1)!\bmod p & =(p-1) \cdot(p-2) \cdots 2 \cdot 1 \bmod p \\
& \equiv(p-1) a \cdot(p-2) a \cdots 2 a \cdot a \bmod p \\
& =a^{p-1} \cdot(p-1)!\bmod p
\end{aligned}
$$

Since all of the factors b in $(p-1)$! satisfy $\operatorname{gcd}(b, p)=1,(p-1)$! also has a multiplicative inverse $\bmod p$, so this congruence implies

$$
1 \equiv a^{p-1} \bmod p
$$

which is what we wanted to show.
II. (20) An RSA public key encryption system has public key $m=551, e=11$. "Crack the code" by determining the private key information: p, q, d.

Solution: We see $m=551=19 \cdot 29$, and both factors are prime, so $p=19$ and $q=29$ (or vice versa - either is OK). Then recall that the decryption exponent must satisfy

$$
e \cdot d \equiv 1 \bmod (p-1)(q-1)
$$

So we need to determine a multiplicative inverse of $e=11 \bmod (p-1)(q-1)=18 \cdot 28=504$. We do this by the Euclidean algorithm:

$$
\begin{aligned}
504 & =45 \cdot 11+9 \\
11 & =1 \cdot 9+2 \\
9 & =4 \cdot 2+1 .
\end{aligned}
$$

So applying the Extended Euclidean Algorithm

	10
	01
45	$1-45$
1	- 146
4	$5-229$

So the multiplicative inverse is $-229 \equiv 275 \bmod 504$. We would use the decryption exponent $d=275$ to decrypt intercepted messages.
III. Let $f: A \rightarrow B$ be a mapping.
(A) (10) Show that if U_{1}, U_{2} are subsets of B, then $f^{-1}\left(U_{1} \cap U_{2}\right)=f^{-1}\left(U_{1}\right) \cap f^{-1}\left(U_{2}\right)$.

Solution: \subseteq : Let $x \in f^{-1}\left(U_{1} \cap U_{2}\right)$. Then $f(x) \in U_{1} \cap U_{2}$, so $f(x) \in U_{1}$ and $f(x) \in U_{2}$. By definition this means that $x \in f^{-1}\left(U_{1}\right)$ and $x \in f^{-1}\left(U_{2}\right)$. Hence $x \in f^{-1}\left(U_{1}\right) \cap$ $f^{-1}\left(U_{2}\right)$. This shows the \subseteq inclusion.
\supseteq : Now assume $x \in f^{-1}\left(U_{1}\right) \cap f^{-1}\left(U_{2}\right)$. This implies $x \in f^{-1}\left(U_{1}\right)$ and $x \in f^{-1}\left(U_{2}\right)$, so by definition, $f(x) \in U_{1}$ and $f(x) \in U_{2}$. But that shows $f(x) \in U_{1} \cap U_{2}$, so $x \in f^{-1}\left(U_{1} \cap U_{2}\right)$. Hence we get the \supseteq inclusion as well.
(B) (10) If f is injective, and T_{1}, T_{2} are subsets of A, show that $f\left(T_{1}\right) \cap f\left(T_{2}\right) \neq \emptyset$ implies $T_{1} \cap T_{2} \neq \emptyset$.

Solution: If $y \in f\left(T_{1}\right) \cap f\left(T_{2}\right)$, then $y=f\left(x_{1}\right)$ for some $x_{1} \in T_{1}$ and $y=f\left(x_{2}\right)$ for some $x_{2} \in T_{2}$. But that implies $f\left(x_{1}\right)=f\left(x_{2}\right)$ and f is assumed injective, so $x_{1}=x_{2}$. This shows $x_{1}=x_{2} \in T_{1} \cap T_{2}$, so $T_{1} \cap T_{2} \neq \emptyset$.
IV. (15) Let R be the relation on $\mathbb{R} \backslash\{0\}$ defined by $a R b \Leftrightarrow \frac{a}{b} \in \mathbb{Q}$. See below. ${ }^{1}$ Is R an equivalence relation? Prove your assertion.

Solution: Yes this is an equivalence relation:
(1) R is reflexive since $\frac{a}{a}=1 \in \mathbb{Q}$ for all $a \in \mathbb{R} \backslash\{0\}$. So $a R a$ is true for all $a \neq 0$.
(2) R is symmetric since $a R b$ says $\frac{a}{b}=\frac{m}{n} \in \mathbb{Q}$ implies $\frac{b}{a}=\frac{n}{m} \in \mathbb{Q}$ (note $m \neq 0$ follows because $a, b \neq 0)$. Hence $a R b$ implies $b R a$.
(3) R is transitive since if $a R b$ and $b R c$, then $\frac{a}{b}=\frac{m}{n}$ and $\frac{b}{c}=\frac{p}{q}$ with m, n, p, q in \mathbb{Z}. But then

$$
\frac{a}{c}=\frac{a}{b} \cdot \frac{b}{c}=\frac{m}{n} \cdot \frac{p}{q}=\frac{m p}{n q}
$$

so $a R c$ as well.

[^0]V.
(A) (10) Show that \mathbb{N} is not bounded above in the real numbers.

Solution: (by contradiction): Assume that \mathbb{N} is bounded above. Then Axiom C for the real number system implies that \mathbb{N} has a least upper bound, call it b. But then by definition of a least upper bound, if we consider $b-1<b$, there must be a natural number $n \in \mathbb{N}$ with $b-1<n \leq b$. But that implies $(b-1)+1=b<n+1$, and $n+1 \in \mathbb{N}$, but $n+1>b$. Hence b cannot be an upper bound for \mathbb{N}. This contradiction shows \mathbb{N} has no upper bound in \mathbb{R}.
(B) (10) Use part (A) to show that for all real numbers $\varepsilon>0$, there exist $n \in \mathbb{N}$ such that $\left|1-\left(1+\frac{(-1)^{n}}{\sqrt{n}}\right)\right|<\varepsilon$

Solution: If we simplify we get

$$
\left|1-\left(1+\frac{(-1)^{n}}{\sqrt{n}}\right)\right|=\frac{1}{\sqrt{n}}
$$

We will have

$$
\frac{1}{\sqrt{n}}<\varepsilon \Leftarrow n>\frac{1}{\varepsilon^{2}}
$$

Since \mathbb{N} is not bounded in \mathbb{R}, no matter how small ε is, and consequently, no matter how $\operatorname{big} \frac{1}{\varepsilon^{2}}$ is, there are still $n>\frac{1}{\varepsilon^{2}}$. This is equivalent to $\frac{1}{\sqrt{n}}<\varepsilon$.

[^0]: ${ }^{1}$ Here $\mathbb{Q}=\{m / n: m, n \in \mathbb{Z}, n \neq 0\}$ is the set of rational numbers.

