College of the Holy Cross, Fall Semester 2017 MATH 243 – Mathematical Structures, section 2 Solutions for Exam 3 – December 7

I. (25) Give the statement and proof of "Fermat's Little Theorem."

Solution: The statement is that if p is prime in \mathbb{Z} and gcd(a, p) = 1. Then $a^{p-1} \equiv 1 \mod p$.

Proof: Since gcd(a, p) = 1, the class $[a] \in \mathbb{Z}/p\mathbb{Z}$ has a multiplicative inverse. We claim this implies that the mapping $f : \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ defined by f([x]) = [a][x] is injective and surjective. Injectivivity follows because if f([x]) = [a][x] = [a][x'] = f([x']), then we can multiply both sides of this equation by $[a]^{-1}$ to obtain [x] = [x']. This shows that f is injective. Then, since $\mathbb{Z}/p\mathbb{Z}$ is finite, f must be surjective as well. Now f([0]) =[0]. Hence f must map the nonzero classes in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ to themselves it follows that the $[a], [2a], \ldots, [(p-1)a]$ are the same as $[1], [2], \ldots, [p-1]$, just in a different order. But then it follows that

$$(p-1)! \mod p = (p-1) \cdot (p-2) \cdots 2 \cdot 1 \mod p$$
$$\equiv (p-1)a \cdot (p-2)a \cdots 2a \cdot a \mod p$$
$$= a^{p-1} \cdot (p-1)! \mod p.$$

Since all of the factors b in (p-1)! satisfy gcd(b,p) = 1, (p-1)! also has a multiplicative inverse mod p, so this congruence implies

$$1 \equiv a^{p-1} \bmod p,$$

which is what we wanted to show.

II. (20) An RSA public key encryption system has public key m = 551, e = 11. "Crack the code" by determining the private key information: p, q, d.

Solution: We see $m = 551 = 19 \cdot 29$, and both factors are prime, so p = 19 and q = 29 (or vice versa – either is OK). Then recall that the decryption exponent must satisfy

$$e \cdot d \equiv 1 \mod (p-1)(q-1),$$

So we need to determine a multiplicative inverse of $e = 11 \mod (p-1)(q-1) = 18 \cdot 28 = 504$. We do this by the Euclidean algorithm:

$$504 = 45 \cdot 11 + 9$$

$$11 = 1 \cdot 9 + 2$$

$$9 = 4 \cdot 2 + 1.$$

So applying the Extended Euclidean Algorithm

So the multiplicative inverse is $-229 \equiv 275 \mod 504$. We would use the decryption exponent d = 275 to decrypt intercepted messages.

III. Let $f : A \to B$ be a mapping.

(A) (10) Show that if U_1, U_2 are subsets of B, then $f^{-1}(U_1 \cap U_2) = f^{-1}(U_1) \cap f^{-1}(U_2)$.

Solution: \subseteq : Let $x \in f^{-1}(U_1 \cap U_2)$. Then $f(x) \in U_1 \cap U_2$, so $f(x) \in U_1$ and $f(x) \in U_2$. By definition this means that $x \in f^{-1}(U_1)$ and $x \in f^{-1}(U_2)$. Hence $x \in f^{-1}(U_1) \cap f^{-1}(U_2)$. This shows the \subseteq inclusion.

 \supseteq : Now assume $x \in f^{-1}(U_1) \cap f^{-1}(U_2)$. This implies $x \in f^{-1}(U_1)$ and $x \in f^{-1}(U_2)$, so by definition, $f(x) \in U_1$ and $f(x) \in U_2$. But that shows $f(x) \in U_1 \cap U_2$, so $x \in f^{-1}(U_1 \cap U_2)$. Hence we get the \supseteq inclusion as well.

(B) (10) If f is injective, and T_1, T_2 are subsets of A, show that $f(T_1) \cap f(T_2) \neq \emptyset$ implies $T_1 \cap T_2 \neq \emptyset$.

Solution: If $y \in f(T_1) \cap f(T_2)$, then $y = f(x_1)$ for some $x_1 \in T_1$ and $y = f(x_2)$ for some $x_2 \in T_2$. But that implies $f(x_1) = f(x_2)$ and f is assumed injective, so $x_1 = x_2$. This shows $x_1 = x_2 \in T_1 \cap T_2$, so $T_1 \cap T_2 \neq \emptyset$.

IV. (15) Let R be the relation on $\mathbb{R}\setminus\{0\}$ defined by $a \ R \ b \Leftrightarrow \frac{a}{b} \in \mathbb{Q}$. See below.¹ Is R an equivalence relation? Prove your assertion.

Solution: Yes this is an equivalence relation:

- (1) R is reflexive since $\frac{a}{a} = 1 \in \mathbb{Q}$ for all $a \in \mathbb{R} \setminus \{0\}$. So a R a is true for all $a \neq 0$.
- (2) *R* is symmetric since *a R b* says $\frac{a}{b} = \frac{m}{n} \in \mathbb{Q}$ implies $\frac{b}{a} = \frac{n}{m} \in \mathbb{Q}$ (note $m \neq 0$ follows because $a, b \neq 0$). Hence *a R b* implies *b R a*.
- (3) *R* is transitive since if *a R b* and *b R c*, then $\frac{a}{b} = \frac{m}{n}$ and $\frac{b}{c} = \frac{p}{q}$ with m, n, p, q in \mathbb{Z} . But then

$$\frac{a}{c} = \frac{a}{b} \cdot \frac{b}{c} = \frac{m}{n} \cdot \frac{p}{q} = \frac{mp}{nq}$$

so a R c as well.

¹Here $\mathbb{Q} = \{m/n : m, n \in \mathbb{Z}, n \neq 0\}$ is the set of rational numbers.

(A) (10) Show that \mathbb{N} is not bounded above in the real numbers.

Solution: (by contradiction): Assume that \mathbb{N} is bounded above. Then Axiom C for the real number system implies that \mathbb{N} has a least upper bound, call it b. But then by definition of a least upper bound, if we consider b-1 < b, there must be a natural number $n \in \mathbb{N}$ with $b-1 < n \leq b$. But that implies (b-1) + 1 = b < n + 1, and $n+1 \in \mathbb{N}$, but n+1 > b. Hence b cannot be an upper bound for \mathbb{N} . This contradiction shows \mathbb{N} has no upper bound in \mathbb{R} .

(B) (10) Use part (A) to show that for all real numbers $\varepsilon > 0$, there exist $n \in \mathbb{N}$ such that $\left|1 - (1 + \frac{(-1)^n}{\sqrt{n}})\right| < \varepsilon$

Solution: If we simplify we get

$$\left|1 - \left(1 + \frac{(-1)^n}{\sqrt{n}}\right)\right| = \frac{1}{\sqrt{n}}$$

We will have

$$\frac{1}{\sqrt{n}} < \varepsilon \Leftarrow n > \frac{1}{\varepsilon^2}$$

Since \mathbb{N} is not bounded in \mathbb{R} , no matter how small ε is, and consequently, no matter how big $\frac{1}{\varepsilon^2}$ is, there are still $n > \frac{1}{\varepsilon^2}$. This is equivalent to $\frac{1}{\sqrt{n}} < \varepsilon$.

Υ.