
College of the Holy Cross, Fall Semester 2017
MATH 243 – Mathematical Structures, section 2

Solutions for Exam 2 – November 3

I. Let f : Z/29Z→ Z/29Z be the mapping defined by f([x]) = [x] + [12].

(A) (10) Show that f is injective.

Solution: If f([x1]) = f([x2]), then we have [x1] + [12] = [x2] + [12]. The element [12]
has an additive inverse in Z/29Z, namely, [17], since [12] + [17] = [0]. If we add that
additive inverse to both sides of the equation [x1] + [12] = [x2] + [12], and use the fact
that addition is associative in Z/29Z, then we get [x1] + [0] = [x2] + [0], so [x1] = [x2].
This shows f is injective.

(B) (10) Is f surjective? Why or why not?

Solution: Yes, f is surjective. Proof 1: Use the result from part (A). Since f maps
distinct elements of Z/29Z to distinct elements, there are 29 different elements of the
range of the mapping. But there are only 29 elements of Z/29Z in all, so the range
must contain all the elements of Z/29Z, and f is surjective by definition.

Proof 2: Another, alternative, way to show this is to note that given any [y] ∈ Z/29Z,
we can solve the equation f([x]) = [x] + [12] = [y] for [x] by taking [x] = [y] + [17],
since [17] is the additive inverse of [12]. This also shows that the map f is surjective.

II.

(A) (20) Give a precise statement of the Division Algorithm in Z, and prove both the
Existence and Uniqueness parts.

Solution: Let N and n > 0 be integers. There exist unique integers q, r such that
N = qn + r with 0 ≤ r < n.

Existence: Consider the set S = {N − kn | k ∈ Z}. Then S ∩ (Z+ ∪ {0}) 6= ∅. (The
reason here is that if N > 0, then we can just take k = 0 to get a positive element of
S. On the other hand if N ≤ 0, we just need to take k to be a negative integer with
absolute value large enough that −N < −kn.) Now by the Well-Ordering property,
S ∩ (Z+ ∪ {0}) contains a smallest element. Call this smallest element r, and write
r = N − qn (that is, k = q for some particular integer q from the definition of the set
S). This gives N = qn+r as required and we only need to show 0 ≤ r < n. Now, r ≥ 0
is automatic by the way r was produced (it’s the smallest non-negative element of S).
Suppose that r ≥ n. Then in the set S we also have N−(q+1)n = N−qn−n = r−n ≥ 0
but r−n < r. This contradicts the choice of r as the smallest non-negative element in
S. With this proof by contradiction, we have shown r ≤ n. Hence both of the required
conditions hold and the existence part of the proof is complete.
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Uniqueness: If N = q1n + r1 and also N = q2n + r2, where r1 and r2 both satisfy the
statement of the theorem but r1 6= r2, then we can assume r1 > r2. Setting the two
expressions for N equal, we have q1n + r1 = q2n + r2, so (q2 − q1)n = r1 − r2. Now
r1− r2 > 0 but also r1− r2 ≤ r1 < n. Hence r1− r2 is a multiple of n that lies strictly
between 0 and n. But that is a clear contradiction. Hence r1 = r2, and hence q1 = q2
as well.

(B) (15) Use the Euclidean algorithm to find the integer d = gcd(585, 108) and express d
in the form d = m · 585 + n · 108 for some integers m,n.

Solution: We have

585 = 5 · 108 + 45

108 = 2 · 45 + 18

45 = 2 · 18 + 9,

but 9|18, so the final nonzero remainder is 9. This gives 9 = gcd(585, 108). Now
applying the Extended Euclidean Algorithm:

1 0
0 1

5 1 -5
2 -2 11
2 5 -27

So 5 · 585 + (−27) · 108 = 9.

III. (10) Let a, b, c be integers. Show that if gcd(a, b) = 1 and a|(bc), then a|c.

Solution: Since gcd(a, b) = 1, there is an equation ma + nb = 1 where m,n ∈ Z. Multiply
both sides by c:

mac + nbc = c.

Now we know that a|(bc), so bc = aq for some q ∈ Z. Hence substituing for the bc in the
second term of the last displayed equation, we have

mac + naq = a(mc + nq) = c

This shows that a|c because mc + nq is also an integer.

IV. (15) Find a solution x of the congruence 31x ≡ 6 mod 64 with 0 ≤ x < 64.

Solution: We have gcd(31, 64) = 1, so [31]−1 exists in Z/64Z To find it, we proceed as in
question II (B) above. By the Euclidean algorithm:

64 = 2 · 31 + 2

31 = 15 · 2 + 1
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and that is the final nonzero remainder. Hence the Extended Euclidean Algorithm table
here is

1 0
0 1

2 1 -2
15 -15 31

Hence (−15) ·64+(31) ·(31) = 1. This shows [31]−1 = [31] in Z/64Z. We have [x] = [31][6] =
[186] = [58] (since 186 = 2 · 64 + 58). Hence the required solution is x = 58.

V. (15) Construct the multiplication table for (Z/12Z)×.

Solution: By definition, (Z/12Z)× is the subset of Z/12Z consisting of the [a] for which
multiplicative inverses [a]−1 exist in Z/12Z. This is equivalent to the condition gcd(a, 12) =
1, so

(Z/12Z)× = {[1], [5], [7], [11]}.

The multiplication table is computed by taking products modulo 12 and the result is

· [1] [5] [7] [11]
[1] [1] [5] [7] [11]
[5] [5] [1] [11] [7]
[7] [7] [11] [1] [5]
[11] [11] [7] [5] [1]

For example [5] · [7] = [35] = [11], since 35 = 2 · 12 + 11.
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