College of the Holy Cross, Fall Semester 2017 MATH 243 - Mathematical Structures, section 2
 Solutions for Exam 2 - November 3

I. Let $f: \mathbb{Z} / 29 \mathbb{Z} \rightarrow \mathbb{Z} / 29 \mathbb{Z}$ be the mapping defined by $f([x])=[x]+[12]$.
(A) (10) Show that f is injective.

Solution: If $f\left(\left[x_{1}\right]\right)=f\left(\left[x_{2}\right]\right)$, then we have $\left[x_{1}\right]+[12]=\left[x_{2}\right]+[12]$. The element $[12]$ has an additive inverse in $\mathbb{Z} / 29 \mathbb{Z}$, namely, [17], since [12] $+[17]=[0]$. If we add that additive inverse to both sides of the equation $\left[x_{1}\right]+[12]=\left[x_{2}\right]+[12]$, and use the fact that addition is associative in $\mathbb{Z} / 29 \mathbb{Z}$, then we get $\left[x_{1}\right]+[0]=\left[x_{2}\right]+[0]$, so $\left[x_{1}\right]=\left[x_{2}\right]$. This shows f is injective.
(B) (10) Is f surjective? Why or why not?

Solution: Yes, f is surjective. Proof 1: Use the result from part (A). Since f maps distinct elements of $\mathbb{Z} / 29 \mathbb{Z}$ to distinct elements, there are 29 different elements of the range of the mapping. But there are only 29 elements of $\mathbb{Z} / 29 \mathbb{Z}$ in all, so the range must contain all the elements of $\mathbb{Z} / 29 \mathbb{Z}$, and f is surjective by definition.

Proof 2: Another, alternative, way to show this is to note that given any $[y] \in \mathbb{Z} / 29 \mathbb{Z}$, we can solve the equation $f([x])=[x]+[12]=[y]$ for $[x]$ by taking $[x]=[y]+[17]$, since $[17]$ is the additive inverse of [12]. This also shows that the map f is surjective.

II.

(A) (20) Give a precise statement of the Division Algorithm in \mathbb{Z}, and prove both the Existence and Uniqueness parts.

Solution: Let N and $n>0$ be integers. There exist unique integers q, r such that $N=q n+r$ with $0 \leq r<n$.

Existence: Consider the set $S=\{N-k n \mid k \in \mathbb{Z}\}$. Then $S \cap\left(\mathbb{Z}^{+} \cup\{0\}\right) \neq \emptyset$. (The reason here is that if $N>0$, then we can just take $k=0$ to get a positive element of S. On the other hand if $N \leq 0$, we just need to take k to be a negative integer with absolute value large enough that $-N<-k n$.) Now by the Well-Ordering property, $S \cap\left(\mathbb{Z}^{+} \cup\{0\}\right)$ contains a smallest element. Call this smallest element r, and write $r=N-q n$ (that is, $k=q$ for some particular integer q from the definition of the set $S)$. This gives $N=q n+r$ as required and we only need to show $0 \leq r<n$. Now, $r \geq 0$ is automatic by the way r was produced (it's the smallest non-negative element of S). Suppose that $r \geq n$. Then in the set S we also have $N-(q+1) n=N-q n-n=r-n \geq 0$ but $r-n<r$. This contradicts the choice of r as the smallest non-negative element in S. With this proof by contradiction, we have shown $r \leq n$. Hence both of the required conditions hold and the existence part of the proof is complete.

Uniqueness: If $N=q_{1} n+r_{1}$ and also $N=q_{2} n+r_{2}$, where r_{1} and r_{2} both satisfy the statement of the theorem but $r_{1} \neq r_{2}$, then we can assume $r_{1}>r_{2}$. Setting the two expressions for N equal, we have $q_{1} n+r_{1}=q_{2} n+r_{2}$, so $\left(q_{2}-q_{1}\right) n=r_{1}-r_{2}$. Now $r_{1}-r_{2}>0$ but also $r_{1}-r_{2} \leq r_{1}<n$. Hence $r_{1}-r_{2}$ is a multiple of n that lies strictly between 0 and n. But that is a clear contradiction. Hence $r_{1}=r_{2}$, and hence $q_{1}=q_{2}$ as well.
(B) (15) Use the Euclidean algorithm to find the integer $d=\operatorname{gcd}(585,108)$ and express d in the form $d=m \cdot 585+n \cdot 108$ for some integers m, n.

Solution: We have

$$
\begin{aligned}
585 & =5 \cdot 108+45 \\
108 & =2 \cdot 45+18 \\
45 & =2 \cdot 18+9,
\end{aligned}
$$

but $9 \mid 18$, so the final nonzero remainder is 9 . This gives $9=\operatorname{gcd}(585,108)$. Now applying the Extended Euclidean Algorithm:

	1	0
	0	1
5	1	-5
2	-2	11
2	5	-27

So $5 \cdot 585+(-27) \cdot 108=9$.
III. (10) Let a, b, c be integers. Show that if $\operatorname{gcd}(a, b)=1$ and $a \mid(b c)$, then $a \mid c$.

Solution: Since $\operatorname{gcd}(a, b)=1$, there is an equation $m a+n b=1$ where $m, n \in \mathbb{Z}$. Multiply both sides by c :

$$
m a c+n b c=c
$$

Now we know that $a \mid(b c)$, so $b c=a q$ for some $q \in \mathbb{Z}$. Hence substituing for the $b c$ in the second term of the last displayed equation, we have

$$
m a c+n a q=a(m c+n q)=c
$$

This shows that $a \mid c$ because $m c+n q$ is also an integer.
IV. (15) Find a solution x of the congruence $31 x \equiv 6 \bmod 64$ with $0 \leq x<64$.

Solution: We have $\operatorname{gcd}(31,64)=1$, so $[31]^{-1}$ exists in $\mathbb{Z} / 64 \mathbb{Z}$ To find it, we proceed as in question II (B) above. By the Euclidean algorithm:

$$
\begin{aligned}
& 64=2 \cdot 31+2 \\
& 31=15 \cdot 2+1
\end{aligned}
$$

and that is the final nonzero remainder. Hence the Extended Euclidean Algorithm table here is

	1	0
	0	1
2	1	-2
15	-15	31

Hence $(-15) \cdot 64+(31) \cdot(31)=1$. This shows $[31]^{-1}=[31]$ in $\mathbb{Z} / 64 \mathbb{Z}$. We have $[x]=[31][6]=$ $[186]=[58]$ (since $186=2 \cdot 64+58$). Hence the required solution is $x=58$.
V. (15) Construct the multiplication table for $(\mathbb{Z} / 12 \mathbb{Z})^{\times}$.

Solution: By definition, $(\mathbb{Z} / 12 \mathbb{Z})^{\times}$is the subset of $\mathbb{Z} / 12 \mathbb{Z}$ consisting of the $[a]$ for which multiplicative inverses $[a]^{-1}$ exist in $\mathbb{Z} / 12 \mathbb{Z}$. This is equivalent to the condition $\operatorname{gcd}(a, 12)=$ 1 , so

$$
(\mathbb{Z} / 12 \mathbb{Z})^{\times}=\{[1],[5],[7],[11]\}
$$

The multiplication table is computed by taking products modulo 12 and the result is

\cdot	$[1]$	$[5]$	$[7]$	$[11]$
$[1]$	$[1]$	$[5]$	$[7]$	$[11]$
$[5]$	$[5]$	$[1]$	$[11]$	$[7]$
$[7]$	$[7]$	$[11]$	$[1]$	$[5]$
$[11]$	$[11]$	$[7]$	$[5]$	$[1]$

For example $[5] \cdot[7]=[35]=[11]$, since $35=2 \cdot 12+11$.

