College of the Holy Cross, Fall Semester, 2017
 MATH 243, Section 2 - Midterm 1
 Friday, September 29

1. (a) (15) Construct the truth table for the statement

$$
((\operatorname{not} Q) \text { and }(P \text { implies } Q)) \text { implies (not } P) \text {. }
$$

Solution: The truth table for $((\operatorname{not} Q)$ and $(P$ implies $Q)$) implies (not P) looks like this:

P	Q	$((\operatorname{not} Q)$	and $(P$	implies $Q))$	implies	$($ not $P)$
T	T	F	F	T	T	F
T	F	T	F	F	T	F
F	T	F	F	T	T	T
F	F	T	T	T	T	T

(The next to last column is the truth value of the whole statement.)
(b) (5) Suppose you know that $x \in \mathbf{R}$ implies that $x^{2} \geq 0$ and someone one hands you a mathematical object x for which you can define x^{2}, and for which x^{2} is a real number with $x^{2}<0$. What can you conclude?
Solution: Let P be the statement $x \in \mathbf{R}$ and let Q be the statement $x^{2} \geq 0$. By part (a), you can say that not P must be true, so x is not a real number.
2. Let

$$
\begin{aligned}
& A=\{x \in \mathbb{Z}: x=3 k+1, \text { some } k \in \mathbb{Z}\} \\
& B=\{x \in \mathbb{Z}: x=4 k, \text { some } k \in \mathbb{Z}\} \\
& C=\{-9,-8,-7,-6,-5,-4,-3,-2,-1\} .
\end{aligned}
$$

(a) (7) What is the set $(A \cup B) \cap C$?

Solution: $(A \cup B) \cap C$ consists of the elements in C that are also either in A or B or in both. This gives

$$
(A \cup B) \cap C=\{-8,-5,-4,-2\} .
$$

(b) (7) What is the set $B^{c} \cap C$?

Solution: The complement of B is the set of integers that are not multiples of 4 . The intersection of that set with C is $\{-9,-7,-6,-5,-3,-2,-1\}$.
(c) (6) Prove or disprove: $4 A \subseteq A \cap B$, where $4 A=\{4 x: x \in A\}$.

Solution: This is true because, for instance, if $x \in 4 A$, then $x=4 \cdot(3 k+1)=12 k+4$ for some $k \in \mathbb{Z}$. This says $x \in B$ directly since $3 k+1 \in \mathbb{Z}$. But we also have $x=12 k+4=3 \cdot(4 k+1)+1$, so $x \in A$. Hence $x \in A \cap B$ and this shows $4 A \subseteq A \cap B$.
3. Consider the statement about $x \in \mathbb{Z}$: If $x^{2} \notin 1+4 \mathbb{Z}$, then x is even.
(a) (10) What is the contrapositive form of this implication?

Solution: If x is odd, then $x^{2} \in 1+4 \mathbb{Z}$. (Note: "not even" is the same as odd here!)
(b) (10) Prove the contrapositive form. What does this imply about the original statement.

Solution: If x is odd, then $x=2 k+1$ for some $k \in \mathbb{Z}$. Hence $x^{2}=(2 k+1)^{2}=$ $4 k^{2}+4 k+1=4\left(k^{2}+k\right)+1$. Since k is an integer, so is $k^{2}+k$. This shows $x^{2} \in 1+4 \mathbb{Z}$. This also proves the implication given in the statement of the problem because that is logically equivalent to the contrapositive form.
4. (20) Let

$$
\begin{aligned}
& A=\{x \in \mathbb{Z}: x=-2+5 k \text { for some } k \in \mathbb{Z}\} \\
& B=\{x \in \mathbb{Z}: x=3+5 k \text { for some } k \in \mathbb{Z}\}
\end{aligned}
$$

Is $A=B$? Prove your assertion.

Solution: These sets are equal (as you will start to see if you list out some of their elements). Here is a proof of $A=B$:
\subseteq : let $x \in A$. Then $x=-2+5 k$ for some integer k. We can rewrite this as $x=$ $(-2+5)+5(k-1)=3+5(k-1)$. Since $k \in \mathbb{Z}, k-1 \in \mathbb{Z}$ as well and this shows $x \in B$. Hence $A \subseteq B$.
\supseteq : Now we show the reverse inclusion. Let $x \in B$ Then $x=3+5 k$ for some $k \in \mathbb{Z}$. We can rearrange that as follows $x=3-5+5(k+1)=-2+5(k+1)$. Since $k \in \mathbb{Z}$, $k+1 \in \mathbb{Z}$ as well and this shows $x \in A$. Hence $B \subseteq A$.

Since $A \subseteq B$ and $B \subseteq A$, we have $A=B$.
5. (20) Prove by mathematical induction: If a, d are any constants and $n \geq 0$ is a natural number, then

$$
a+(a+d)+(a+2 d)+\cdots+(a+n d)=\frac{n+1}{2} \cdot(2 a+n d) .
$$

Solution: The base case is $n=0$, and the formula in that case says $a=\frac{1}{2}(2 a+0 \cdot d)=a$, which is true. Now assume

$$
a+(a+d)+(a+2 d)+\cdots+(a+k d)=\frac{k+1}{2} \cdot(2 a+k d)
$$

And consider the sum with $n=k+1$. As typically happens in these proofs of summation formulas, the sum for $n=k$ consists of the first group of terms. So after substituting from the induction hypothesis, we get

$$
\frac{k+1}{2} \cdot(2 a+k d)+(a+(k+1) d) .
$$

If we separate out the a and the d terms we can see this is

$$
((k+1) a+a)+\frac{k(k+1)}{2} \cdot d+(k+1) d=(k+2) a+\frac{(k+1)(k+2)}{2} \cdot d .
$$

Hence by factoring out $\frac{(k+2}{2}$, this can be written in the form

$$
\frac{(k+2)}{2}(2 a+(k+1) d),
$$

which gives what we wanted to show.

