MATH 243 - Mathematical Structures
Selected Solutions for Problem Set 4
I. Let m, b be integers and consider the mapping $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(x)=m x+b$.
(A) Prove that f is injective if and only if $m \neq 0$.

Solution: Since this is an "if and only if" statement, we must prove both implications.
\Rightarrow : Assume that f is an injective mapping. Then $x_{1} \neq x_{2}$ in \mathbb{Z} implies $f\left(x_{1}\right)=m x_{1}+b \neq$ $m x_{2}+b=f\left(x_{2}\right)$. If $m=0$, then this is a false statement because $f\left(x_{1}\right)=0+b=0+b=f\left(x_{2}\right)$. Hence f injective implies $m \neq 0$.
\Leftarrow : Assume that $m \neq 0$. If $f\left(x_{1}\right)=f\left(x_{2}\right)$, then we have $m x_{1}+b=m x_{2}+b$, so $m x_{1}=m x_{2}$ and therefore $m\left(x_{1}-x_{2}\right)=0$. If $m \neq 0$, then the only way this can be true is for $x_{1}-x_{2}=0$ and this shows $x_{1}=x_{2}$. We have proved that f is injective (using the contrapositive form of the definition).
(B) Find conditions on m, b equivalent to saying f is surjective and prove your assertion.

Solution: Saying f is surjective means that for all $y \in \mathbb{Z}$, there must be some $x \in \mathbb{Z}$ such that $f(x)=m x+b=y$. We claim that this is true if and only if $m= \pm 1$.
\Leftarrow : If $m= \pm 1$, then we can solve the equation $m x+b=y$ for x and remain in the integers. Namely $x= \pm(y-b) \in \mathbb{Z}$. This shows that $m= \pm 1$ implies f is surjective.
\Rightarrow : Conversely, if f is surjective, then saying $f(x)=m x+b=y$ is solvable for all $y \in \mathbb{Z}$ says that $m x=y-b$ takes on every value in \mathbb{Z} as x varies through \mathbb{Z}. In particular, this says $m \mathbb{Z}=\mathbb{Z}$ and that is true only when $m= \pm 1$.
II. Let b, c be integers and define $f: \mathbb{Z} \rightarrow \mathbb{Z}$ by $f(x)=x^{2}+b x+c$.
(A) Show that f is not injective.

Solution: Recall the algebraic technique of completing the square in a quadratic function:

$$
f(x)=x^{2}+b x+c=(x+b / 2)^{2}+c-b^{2} / 4
$$

This shows that the graph $y=f(x)$ is a horizontally and vertically shifted version of the basic parabola $y=x^{2}$ (for $x \in \mathbb{Z}$). This shows the vertex is located at $\left(-b / 2, c-b^{2} / 4\right)$ but this may be a point whose coordinates are not integers. To show that $f(x)$ is not injective, it is enough to find two different x-values that give equal function values. Thinking of the shape of the parabola, we want two integer x-values the same distance away from $x=-b / 2$, one to the left and one to the right. f will take the same value at both of them. Here, a direct computation shows that if $b \neq 0$, then

$$
f(-b)=(-b)^{2}+b \cdot-b+c=c=0^{2}+b \cdot 0+c=f(0) .
$$

That is, $x=-b$ and $x=0$ are located the same distance away from $x=-b / 2$ on either side and give the same function value. On the other hand, if $b=0$, then we can take $x= \pm 1$ and $f(-1)=1+c=f(1)$. This shows that f is not injective for any choice of b and c.
(B) Show that f is not surjective.

Solution: By the completion of the square done in part (A), note that $(x+b / 2)^{2}+c-b^{2} / 4 \geq$ $c-b^{2} / 4$ for all $x \in \mathbb{Z}$. Hence the range of f contains no integer $y<c-b^{2} / 4$ and f is not surjective.
III. For each of the following pairs of integers N, n, find the integer quotient q and remainder $0 \leq r<n-1$ satisfying $N=q n+r$ as in Theorem 4.8.
(A) $N=796, n=26$

Solution: $796=30 \cdot 36+16$, so $q=30$ and $r=16$.
(B) $N=1205, n=37$

Solution: $1205=32 \cdot 37+21$, so $q=32$ and $r=21$.
(C) $N=-27, n=7$.

Solution: $-27=(-4) \cdot 7+1$, so $q=-4$ and $r=1$.

From the Text:

Exercise 4.4.

(a) Let n and $n+1$ be any two consecutive integers. Then

$$
(n+1)^{2}-n^{2}=n^{2}+2 n+1-n^{2}=2 n+1 .
$$

Since n is an integer, this is odd.
(b) Let $N=(2 k)^{2}$ be the square of an even integer $2 k$. Then $N=4 k^{2}$, so N leaves a remainder of 0 on division by 4 . On the other hand, if $N=(2 \ell+1)^{2}$ is the square of an odd integer $2 \ell+1$, then

$$
N=4 \ell^{2}+4 \ell+1=\left(\ell^{2}+\ell\right) \cdot 4+1 .
$$

Since $\ell^{2}+\ell \in \mathbb{Z}$ and $0 \leq 1<4$, the uniqueness of the quotient and remainder on division show that N leaves a remainder of 1 on division by 4 in this case.
(c) Assume that n and m are not both even. This means that there are three cases to consider
(i) n even and m odd,
(ii) n odd and m even,
(iii) n and m both odd.

In case (i), we claim the equation $n^{2}=2 m^{2}$ is impossible. Arguing by contradiction, suppose $n^{2}=2 m^{2}$ was true. First, n^{2} leaves a remainder of 0 on division by 4 by part (b). On the other hand, $2 m^{2}$ would equal $2(2 k+1)^{2}$ for some $k \in \mathbb{Z}$. But

$$
2(2 k+1)^{2}=8 k^{2}+8 k+2=4\left(2 k^{2}+2 k\right)+2
$$

Since $2 k^{2}+2 k \in \mathbb{Z}$ and $0 \leq 2<4$, the uniqueness of the quotient and remainder on division implies that $2 m^{2}$ leaves a remainder of 2 on division by 4 . This is a contradiction, so $n^{2} \neq 2 m^{2}$ in this case.

In case (ii), again we claim $n^{2}=2 m^{2}$ is impossible. The reason is that n^{2} leaves a remainder of 1 on division by 4 , but $2 m^{2}$ would leave a remainder of 0 .

Finally in case (iii) we again claim $n^{2}=2 m^{2}$ is impossible. This case is similar to (ii) since the left side would leave a remainder of 1 on division by 4 , but the right side would leave a remainder of 2 .
(Note: this is also closely related to the proof we did that $\sqrt{2}$ is not a rational number and the contrapositive statement "If $n^{2}=2 m^{2}$, then n and m are both even" can be proved with exactly the same reasoning we used there.)

Exercise 4.5. (c) The tables the problem asked for look like this. For addition:

+	$r_{2}=0$	$r_{2}=1$
$r_{1}=0$	0	1
$r_{1}=1$	1	0

The only nontrivial one is the case with $r_{1}=r_{2}=1$. Then we have $n_{1}=2 q_{1}+1$ and $n_{2}=2 q_{2}+1$. Hence $n_{1}+n_{2}=2 q_{1}+1+2 q_{2}+1=2\left(q_{1}+q_{2}+1\right)+0$. Since $q_{1}+q_{2}+1 \in \mathbb{Z}$, the remainder on division by 2 is 0 in this case.

The corresponding table for multiplication is:

\cdot	$r_{2}=0$	$r_{2}=1$
$r_{1}=0$	0	0
$r_{1}=1$	0	1

In words, remainder on division of $n_{1} \cdot n_{2}$ in this case will just be the product of the two remainders: $r_{1} \cdot r_{2}$.

Exercise 4.6. In formulas, the general pattern is that if $n_{1}=5 q_{1}+r_{1}$ and $n_{2}=5 q_{2}+r_{2}$, then

$$
n_{1}+n_{2}=5\left(q_{1}+q_{2}\right)+\left(r_{1}+r_{2}\right)
$$

But $r_{1}+r_{2} \geq 5$ is possible, so we can also divide 5 into that integer to obtain

$$
r_{1}+r_{2}=5 q+r
$$

and then

$$
n_{1}+n_{2}=5\left(q_{1}+q_{2}+q\right)+r
$$

and the remainder on division of $n_{1}+n_{2}$ is the remainder on division by 5 of the sum $r_{1}+r_{2}$.
Similarly, we have

$$
n_{1} \cdot n_{2}=\left(5 q_{1}+r_{1}\right) \cdot\left(5 q_{2}+r_{2}\right)=5\left(5 q_{1} q_{2}+q_{1} r_{2}+q_{2} r_{1}\right)+r_{1} \cdot r_{2} .
$$

But again $r_{1} \cdot r_{2} \geq 5$ is possible so if we divide again $r_{1} \cdot r_{2}=5 q+r$, then

$$
n_{1} \cdot n_{2}=5\left(5 q_{1} q_{2}+q_{1} r_{2}+q_{2} r_{1}+q\right)+r
$$

and the remainder on division of $n_{1} \cdot n_{2}$ is the remainder on division by 5 of the product $r_{1} \cdot r_{2}$.
The possibilities can also be described by giving tables like the ones from the last problem. (For simplicity we omit the $r_{2}=$ from the column headings and the $r_{1}=$ from the row headings, but the idea is the same.)

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

and

\cdot	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Exercise 4.8. We want to show that the equations can be solved for $u, v \in \mathbb{Z}$ if and only if a, b are either both even or both odd.
\Rightarrow : Assume the equations have integer solutions $u, v \in \mathbb{Z}$. The equations $u+v=a$ and $u-v=b$ can be added to produce $2 u=a+b$ and subtracted to produce $2 v=a-b$. It follows that $a+b=2 u$ and $a-b=2 v$ are both even integers. This implies (by the addition table from Exercise 4.5) that a, b are either both even or both odd.
\Leftarrow : Conversely, assume that a, b are either both even or both odd. Then (again by the addition table from Exercise 4.5) it follows that $a+b$ and $a-b$ are both even integers. Hence $a+b=2 u$ for some $u \in \mathbb{Z}$ and $a-b=2 v$ for some $v \in \mathbb{Z}$. This shows that $u=\frac{a+b}{2}$ and $v=\frac{a-b}{2}$ are integer solutions of the original equations, since adding we get $2 a=2(u+v)$, so $u+v=a$, and similarly subtracting, $2 b=2(u-v)$, so $u-v=b$.

