
MATH 243 – Mathematical Structures
Selected Solutions for Problem Set 4

I. Let m, b be integers and consider the mapping f : Z→ Z defined by f(x) = mx + b.

(A) Prove that f is injective if and only if m 6= 0.

Solution: Since this is an “if and only if” statement, we must prove both implications.

⇒: Assume that f is an injective mapping. Then x1 6= x2 in Z implies f(x1) = mx1 + b 6=
mx2+b = f(x2). If m = 0, then this is a false statement because f(x1) = 0+b = 0+b = f(x2).
Hence f injective implies m 6= 0.

⇐: Assume that m 6= 0. If f(x1) = f(x2), then we have mx1 + b = mx2 + b, so mx1 = mx2
and therefore m(x1−x2) = 0. If m 6= 0, then the only way this can be true is for x1−x2 = 0
and this shows x1 = x2. We have proved that f is injective (using the contrapositive form of
the definition).

(B) Find conditions on m, b equivalent to saying f is surjective and prove your assertion.

Solution: Saying f is surjective means that for all y ∈ Z, there must be some x ∈ Z such that
f(x) = mx + b = y. We claim that this is true if and only if m = ±1.

⇐: If m = ±1, then we can solve the equation mx + b = y for x and remain in the integers.
Namely x = ±(y − b) ∈ Z. This shows that m = ±1 implies f is surjective.

⇒: Conversely, if f is surjective, then saying f(x) = mx + b = y is solvable for all y ∈ Z says
that mx = y − b takes on every value in Z as x varies through Z. In particular, this says
mZ = Z and that is true only when m = ±1.

II. Let b, c be integers and define f : Z→ Z by f(x) = x2 + bx + c.

(A) Show that f is not injective.

Solution: Recall the algebraic technique of completing the square in a quadratic function:

f(x) = x2 + bx + c = (x + b/2)2 + c− b2/4

This shows that the graph y = f(x) is a horizontally and vertically shifted version of the basic
parabola y = x2 (for x ∈ Z). This shows the vertex is located at (−b/2, c − b2/4) but this
may be a point whose coordinates are not integers. To show that f(x) is not injective, it is
enough to find two different x-values that give equal function values. Thinking of the shape
of the parabola, we want two integer x-values the same distance away from x = −b/2, one
to the left and one to the right. f will take the same value at both of them. Here, a direct
computation shows that if b 6= 0, then

f(−b) = (−b)2 + b · −b + c = c = 02 + b · 0 + c = f(0).
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That is, x = −b and x = 0 are located the same distance away from x = −b/2 on either side
and give the same function value. On the other hand, if b = 0, then we can take x = ±1 and
f(−1) = 1 + c = f(1). This shows that f is not injective for any choice of b and c.

(B) Show that f is not surjective.

Solution: By the completion of the square done in part (A), note that (x+ b/2)2 + c− b2/4 ≥
c − b2/4 for all x ∈ Z. Hence the range of f contains no integer y < c − b2/4 and f is not
surjective.

III. For each of the following pairs of integers N,n, find the integer quotient q and remainder
0 ≤ r < n− 1 satisfying N = qn + r as in Theorem 4.8.

(A) N = 796, n = 26

Solution: 796 = 30 · 36 + 16, so q = 30 and r = 16.

(B) N = 1205, n = 37

Solution: 1205 = 32 · 37 + 21, so q = 32 and r = 21.

(C) N = −27, n = 7.

Solution: −27 = (−4) · 7 + 1, so q = −4 and r = 1.

From the Text:

Exercise 4.4.

(a) Let n and n + 1 be any two consecutive integers. Then

(n + 1)2 − n2 = n2 + 2n + 1− n2 = 2n + 1.

Since n is an integer, this is odd.

(b) Let N = (2k)2 be the square of an even integer 2k. Then N = 4k2, so N leaves a remainder
of 0 on division by 4. On the other hand, if N = (2` + 1)2 is the square of an odd integer
2` + 1, then

N = 4`2 + 4` + 1 = (`2 + `) · 4 + 1.

Since `2 + ` ∈ Z and 0 ≤ 1 < 4, the uniqueness of the quotient and remainder on division
show that N leaves a remainder of 1 on division by 4 in this case.

(c) Assume that n and m are not both even. This means that there are three cases to consider

(i) n even and m odd,

(ii) n odd and m even,
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(iii) n and m both odd.

In case (i), we claim the equation n2 = 2m2 is impossible. Arguing by contradiction, suppose
n2 = 2m2 was true. First, n2 leaves a remainder of 0 on division by 4 by part (b). On the
other hand, 2m2 would equal 2(2k + 1)2 for some k ∈ Z. But

2(2k + 1)2 = 8k2 + 8k + 2 = 4(2k2 + 2k) + 2.

Since 2k2 + 2k ∈ Z and 0 ≤ 2 < 4, the uniqueness of the quotient and remainder on division
implies that 2m2 leaves a remainder of 2 on division by 4. This is a contradiction, so n2 6= 2m2

in this case.

In case (ii), again we claim n2 = 2m2 is impossible. The reason is that n2 leaves a remainder
of 1 on division by 4, but 2m2 would leave a remainder of 0.

Finally in case (iii) we again claim n2 = 2m2 is impossible. This case is similar to (ii) since
the left side would leave a remainder of 1 on division by 4, but the right side would leave a
remainder of 2.

(Note: this is also closely related to the proof we did that
√

2 is not a rational number and
the contrapositive statement “If n2 = 2m2, then n and m are both even” can be proved with
exactly the same reasoning we used there.)

Exercise 4.5. (c) The tables the problem asked for look like this. For addition:

+ r2 = 0 r2 = 1

r1 = 0 0 1

r1 = 1 1 0

The only nontrivial one is the case with r1 = r2 = 1. Then we have n1 = 2q1 + 1 and n2 = 2q2 + 1.
Hence n1 + n2 = 2q1 + 1 + 2q2 + 1 = 2(q1 + q2 + 1) + 0. Since q1 + q2 + 1 ∈ Z, the remainder on
division by 2 is 0 in this case.

The corresponding table for multiplication is:

· r2 = 0 r2 = 1

r1 = 0 0 0

r1 = 1 0 1

In words, remainder on division of n1 ·n2 in this case will just be the product of the two remainders:
r1 · r2.

Exercise 4.6. In formulas, the general pattern is that if n1 = 5q1 + r1 and n2 = 5q2 + r2, then

n1 + n2 = 5(q1 + q2) + (r1 + r2).

3



But r1 + r2 ≥ 5 is possible, so we can also divide 5 into that integer to obtain

r1 + r2 = 5q + r

and then
n1 + n2 = 5(q1 + q2 + q) + r

and the remainder on division of n1 + n2 is the remainder on division by 5 of the sum r1 + r2.
Similarly, we have

n1 · n2 = (5q1 + r1) · (5q2 + r2) = 5(5q1q2 + q1r2 + q2r1) + r1 · r2.

But again r1 · r2 ≥ 5 is possible so if we divide again r1 · r2 = 5q + r, then

n1 · n2 = 5(5q1q2 + q1r2 + q2r1 + q) + r

and the remainder on division of n1 · n2 is the remainder on division by 5 of the product r1 · r2.
The possibilities can also be described by giving tables like the ones from the last problem. (For

simplicity we omit the r2 = from the column headings and the r1 = from the row headings, but
the idea is the same.)

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

and
· 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

Exercise 4.8. We want to show that the equations can be solved for u, v ∈ Z if and only if a, b are
either both even or both odd.
⇒: Assume the equations have integer solutions u, v ∈ Z. The equations u+v = a and u−v = b

can be added to produce 2u = a+b and subtracted to produce 2v = a−b. It follows that a+b = 2u
and a− b = 2v are both even integers. This implies (by the addition table from Exercise 4.5) that
a, b are either both even or both odd.
⇐: Conversely, assume that a, b are either both even or both odd. Then (again by the addition

table from Exercise 4.5) it follows that a + b and a − b are both even integers. Hence a + b = 2u
for some u ∈ Z and a − b = 2v for some v ∈ Z. This shows that u = a+b

2 and v = a−b
2 are integer

solutions of the original equations, since adding we get 2a = 2(u + v), so u + v = a, and similarly
subtracting, 2b = 2(u− v), so u− v = b.
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