MATH 243 - Mathematical Structures Problem Set 4

Due: October 6, 2017
I. Let m, b be integers and consider the mapping $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(x)=m x+b$.
(A) Prove that f is injective if and only if $m \neq 0$.
(B) Find conditions on m, b equivalent to saying f is surjective and prove your assertion.
II. Let b, c be integers and define $f: \mathbb{Z} \rightarrow \mathbb{Z}$ by $f(x)=x^{2}+b x+c$.
(A) Show that f is not injective.
(B) Show that f is not surjective.
III. For each of the following pairs of integers N, n, find the integer quotient q and remainder $0 \leq r<n-1$ satisfying $N=q n+r$ as in Theorem 4.8.
(A) $N=796, n=26$
(B) $N=1205, n=37$
(C) $N=-27, n=7$.

From the Text: Exercises 4.4, 4.5, 4.6, 4.8.

