
Patrick,

The problems you are asking about that I put on the review sheet are for your “general
mathematical education” and a way to prepare for the exam by looking at problems that
are somewhat harder than the ones you’ll actually be seeing. In other words, if you can
do those, you’ll not have any difficulty with the exam because you’ll really understand
everything. The actual exam will be closer to the practice problems.

On 4.10 A, what you are saying is not quite correct. (You need to review what it means
for something to be a subgroup of the integers under addition – see Definition 4.18.) The
set 〈a〉 ∩ 〈b〉 is the set of integers that are simultaneously multiples of a and multiples of b.
That means it is the set of all integers x such that x = sa = tb for some integers s, t. So
you had the definition more or less correct. However, to show that that is a subgroup of Z,
you need to show first that if you take x1, x2 ∈ 〈a〉 ∩ 〈b〉, then the sum x1 + x2 ∈ 〈a〉 ∩ 〈b〉
as well. This is true because you have x1 = s1a = t1b and x2 = s2a = t2b for some integers
s1, t1, s2, t2. So

x1 + x2 = s1a+ s2a = (s1 + s2)a and

x1 + x2 = t1b+ t2b = (t1 + t2)b.

This shows x1 + x2 ∈ 〈a〉 ∩ 〈b〉. Then, you also need to show that −x1 ∈ 〈a〉 ∩ 〈b〉. But
this follows too since −x1 = (−s1)a = (−t1)b, so −x1 is also a multiple of both a and b.

Now, by Theorem 4.20, we know that 〈a〉 ∩ 〈b〉 = mZ for some (unique) positive integer
m. I’m calling it m rather than d in the theorem because this m is going to be the least
common multiple of a, b.

Then for part B what you need to show is:
1. m is a common multiple of a and b – that is, a|m and b|m
2. If n is any other common multiple of a and b, then m|n (so m is the smallest number

that is a common multiple of a, b).

Statement 1 follows directly from the definition of 〈a〉 ∩ 〈b〉. m is in that subgroup so it is
a multiple of a and a multiple of b. Statement 2 is proved like this: If a|n and b|n, then
n = sa = tb for some integers s, t. But that is equivalent to saying that n ∈ 〈a〉 ∩ 〈b〉.
Hence m|n since m divides everything in 〈a〉 ∩ 〈b〉.

For part C, use the suggestion: Assume ab = md (for any two integersm, d – not necessarily
the lcm and gcd yet). We want to show that d is a common divisor of a and b if and only
if m is a common multiple of a and b.

⇒: If d|a and d|b then we can write a = ds and b = dt for some integers s, t. But then
(ds)(dt) = md, so dst = m. This shows (ds) = a divides m and (dt) = b divides m. Hence
m is a common multiple of a, b.

⇐: Conversely, if m is a common multiple of a, b, then we have m = as and m = bt for
some integers s, t. Substituting the first one into the equation ab = md we get ab = asd so
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b = sd and d|b. Similarly, if we substitute the second one in to ab = md, we get ab = btd

so a = td, which says d|a.

Now to prove that ab = gcd(a, b)lcm(a, b), we can argue like this. ab is clearly a common
multiple of a, b, so it is in the subgroup 〈a〉 ∩ 〈b〉. That shows that lcm(a, b) divides the
product ab and we have an equation ab = lcm(a, b) · q for some integer q. But what we
proved above (the “suggestion”) shows that q must then be a common divisor of a, b.
Arguing by contradiction, suppose that q 6= d = gcd(a, b). Then from the properties of
d = gcd(a, b) we know that q|d, or d = qs for some integer s > 1. If we multiply s on both
sides of the equation ab = lcm(a, b) · q, we get abs = lcm(a, b)d. But d divides a so a = dr

for some integer r and we get (dr)bs = lcm(a, b)d so rbs = lcm(a, b). Similarly b = dt for
some t so we get a(dt)s = lcm(a, b)d, so ats = lcm(a, b). But now we have a contradiction
because of the factor s > 1 on the left side of both of these equations. The number rb = at

is also a common multiple of a, b and it’s smaller than rbs = ats since s > 1. Hence the
other factor q in the equation ab = lcm(a, b) · q must equal d = gcd(a, b).
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