
MATH 243 – Mathematical Structures, section 2
Final Exam Solutions

I. A) Let p, q represent any propositions. Construct the truth table for the proposition

(p implies q) if and only if ((p and notq) impliesnotp)

Solution:

p q (p implies q) if and only if ((p and not q) implies not p)

T T T T ((F ) T F )

T F F T ((T ) F F )

F T T T ((F ) T T )

F F T T ((F ) T T )

(The column lined lined up under the “and” of “if and only if” is the truth value of the
whole proposition. Note this is the basis of one form of proof by contradiction!)

B) Give the contrapositive form of the statement “If the product of two integers x, y is
even, then x is even or y is even.”

Solution: “If x is not even (odd) and y is not even (odd), then the product of the two
integers x, y is not even (odd).”

C) Give the converse of the statement in part B.

Solution: “If x is even or y is even, then the product x, y is even.”

II. All parts of this question refer to the mapping f : Z → Z defined by

f(x) =
{

6x if x is even
2− x if x is odd

A) Let U = {1, 2, 3, 4, 5}. What is f(U) ∩ {x ∈ Z : x > 0}?

Solution: Since f(1) = 1, f(2) = 12, f(3) = −1, f(4) = 24, f(5) = −3, we see

f(U) ∩ {x ∈ Z : x > 0} = {1, 12, 24}.

B) Let V = 4Z. What is f−1(V ) for this mapping?

Solution: Note that if x is odd, then f(x) = 2−x is also odd. On the other hand, if x = 2k
is even, then f(x) = f(2k) = 6 · 2k = 4 · 3k ∈ 4Z. Hence f−1(V ) = 2Z (all even numbers).

1



III. Give a precise statement of the Division Algorithm in Z and prove the Existence and
Uniqueness parts.

Solution: LetN and n > 0 be integers. There exist unique integers q, r such thatN = qn+r
with 0 ≤ r < n.

Existence: Consider the set S = {N − kn | k ∈ Z}. Then S ∩ (Z+ ∪ {0}) 6= ∅.
(The reason here is that if N > 0, then we can just take k = 0 to get a positive
element of S. On the other hand if N ≤ 0, we just need to take k to be a negative
integer with absolute value large enough that −N < −kn.) Now by the Well-Ordering
property, S ∩ (Z+ ∪ {0}) contains a smallest element. Call this smallest element
r, and write r = N − qn (that is, k = q for some particular integer q from the
definition of the set S). This gives N = qn+ r as required and we only need to show
0 ≤ r < n. Now, r ≥ 0 is automatic by the way r was produced (it’s the smallest
non-negative element of S). Suppose that r ≥ n. Then in the set S we also have
N − (q + 1)n = N − qn − n = r − n ≥ 0 but r − n < r. This contradicts the choice
of r as the smallest non-negative element in S. With this proof by contradiction, we
have shown r ≤ n. Hence both of the required conditions hold and the existence part
of the proof is complete.

Uniqueness: If N = q1n+ r1 and also N = q2n+ r2, where r1 and r2 both satisfy the
statement of the theorem but r1 6= r2, then we can assume r1 > r2. Setting the two
expressions for N equal, we have q1n + r1 = q2n + r2, so (q2 − q1)n = r1 − r2. Now
r1− r2 > 0 but also r1− r2 ≤ r1 < n. Hence r1− r2 is a multiple of n that lies strictly
between 0 and n. But that is a clear contradiction. Hence r1 = r2, and hence q1 = q2
as well.

IV. A) Use the Euclidean Algorithm to find the integer d = gcd(753, 156) and express d in
the form d = 753m+ 156n for some integers m,n

Solution: Applying the Euclidean Algorithm,

753 = 4 · 156 + 129

156 = 1 · 129 + 27

129 = 4 · 27 + 21

27 = 1 · 21 + 6

21 = 3 · 6 + 3

6 = 2 · 3 + 0

Hence the last nonzero remainder 3 = gcd(753, 156). Now we apply the Extended Eu-
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clidean Algorithm to find m,n:
1 0

0 1

4 1 − 4

1 − 1 5

4 5 − 24

1 − 6 29

3 23 − 111

Hence 23 · 753 + (−111) · 156 = 3.

B) Let a, b, c be integers. Prove that gcd(ab, c) = 1 if and only if gcd(a, c) = 1 and
gcd(b, c) = 1.

Solution: ⇒: Suppose that gcd(ab, c) = 1. Then we know this means there exist integers
m,n such that m · (ab) + n · c = 1. But then by the commutative and associative laws
for multiplication in Z, this implies that (mb) · a + n · c = 1. Since mb is an integer, this
implies gcd(a, c) = 1 since gcd(a, c) is the smallest positive integer in the set of integer
linear combinations {pa + qc : p, q ∈ Z}. Similarly, (ma) · b + n · c = 1 and that implies
gcd(b, c) = 1.

⇐: If gcd(a, c) = 1 and gcd(b, c) = 1, then there exist integersm,n, p, q such thatma+nc =
1 and pb+ qc = 1. Multiplying these equations together, we get 1 = (ma+ nc)(pb+ qc) =
(mp)(ab)+ (npb+mqa+nqc)c. Since mp, npb+mqa+nqc ∈ Z, this shows gcd(ab, c) = 1.

V. Let f : A → B be a mapping and U, V ⊆ A. For each statement give a proof if
the statement is true, or give a counterexample if the statement is false. (A complete
counterexample consists of specific sets A,B, U , and V , a mapping f , and a justification
of why these data contradict the statement.)

A) If f is injective and f(U) ⊆ f(V ), then U ⊆ V .

Solution: This statement is true. Proof: Let x ∈ U . Then f(x) ∈ f(U) by definition. Since
f(U) ⊆ f(V ), we also have f(x) ∈ f(V ), and so f(x) = f(x′) for some x′ ∈ V . However,
we also know that f is injective, so x = x′ ∈ V , so x ∈ V . Since this holds for all x ∈ U ,
U ⊆ V .

B) If f is surjective and f(U) ⊆ f(V ), then U ⊆ V .

Solution: This statement is false. Here’s a counterexample. Let A = {1, 2}, U = {1},
V = {2}, B = {b}, and let f : A → B be the mapping defined by f(1) = f(2) = b.
We clearly have f is surjective and f(U) ⊆ f(V ) since both sets are B = {b}. However
U ∩ V = ∅, so we do not have U ⊆ V .
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VI. All parts of this question refer to R = Z/30Z, in which the operations are addition
and multiplication mod 30.

A) Construct the addition and multiplication tables for the subset T = {[0], [6], [12], [18], [24]}
in R.

Solution: The addition table is

[0] [6] [12] [18] [24]

[0] [0] [6] [12] [18] [24]

[6] [6] [12] [18] [24] [0]

[12] [12] [18] [24] [0] [6]

[18] [18] [24] [0] [6] [12]

[24] [24] [0] [6] [12] [18]

The multiplication table is
[0] [6] [12] [18] [24]

[0] [0] [0] [0] [0] [0]

[6] [0] [6] [12] [18] [24]

[12] [0] [12] [24] [6] [18]

[18] [0] [18] [6] [24] [12]

[24] [0] [24] [18] [12] [6]

B) Which elements of R have multiplicative inverses? Explain how you know. We have a
multiplicative inverse for [a] if and only if gcd(a, 30) = 1. This is because having a b such
that [a][b] = [1] is equivalent to an equation a · b = 1 + k · 30 for some integer, and this
can be rearranged to say b · a + (−k) · 30 = 1, which is equivalent to gcd(a, 30) = 1. The
classes that have inverses are:

[1], [7], [11], [13], [17], [19], [23], [29]

VII. A) Prove by mathematical induction that

1

1 · 2
+

1

2 · 3
+ · · ·+

1

n · (n+ 1)
=

n

n+ 1

for all natural numbers n ≥ 1.

Solution: The base case is n = 1, and the formula says in that case

1

1 · 2
=

1

1 + 1
.
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This is clearly true since both sides give 1

2
. Now for the induction step, assume that

1

1 · 2
+

1

2 · 3
+ · · ·+

1

k · (k + 1)
=

k

k + 1

and consider
1

1 · 2
+

1

2 · 3
+ · · ·+

1

k · (k + 1)
+

1

(k + 1)(k + 2)
.

By the induction hypothesis, this equals

k

k + 1
+

1

(k + 1)(k + 2)
.

Putting these terms over a common denominator, we have

k(k + 2) + 1

(k + 1)(k + 2)
=

k2 + 2k + 1

(k + 1)(k + 2)
=

(k + 1)2

(k + 1)(k + 2)
.

Canceling one power of k+ 1 between the numerator and denominator, we see this equals
k+1

k+2
, as desired. The formula is thus true for all n ≥ 1 by induction.

B) What is the least upper bound

L = sup

({

1

1 · 2
+

1

2 · 3
+ · · ·+

1

n · (n+ 1)
: n ≥ 1

})

?

(This is the same set of numbers as in part A.) Prove your assertion by showing that for
every real ǫ > 0, there exist some n such that

L− ǫ <
1

1 · 2
+

1

2 · 3
+ · · ·+

1

n · (n+ 1)
=

n

n+ 1
≤ L.

Solution: The least upper bound is L = 1. This follows by considering the equality proved
in part A. First, it is clear that n

n+1
≤ 1 for all n ∈ N, so L = 1 is an upper bound. But

we also see that for all n ≥ 1,

1

1 · 2
+

1

2 · 3
+ · · ·+

1

n · (n+ 1)
=

n

n+ 1
= 1−

1

n+ 1
.

For all ǫ > 0, there exist n ∈ N such that 1

n+1
< ǫ and that implies

1− ǫ < 1−
1

n+ 1
=

n

n+ 1
≤ 1.

This shows that the least upper bound is L = 1.

C) What does your argument in part B say about the sequence

an =
1

1 · 2
+

1

2 · 3
+ · · ·+

1

n · (n+ 1)
=

n

n+ 1
?

Solution: It says the sequence converges to L = 1.
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