
MATH 243 – Mathematical Structures
Solutions for Exam 1 Practice Problems – September 28, 2017

I.

(A) The truth table for (P and (P implies Q)) implies Q looks like this:

P Q (P and (P implies Q)) implies Q

T T T T T
T F F F T
F T F T T
F F F T T

(The last column is the truth value of the whole statement.)

(B) The truth table for ((not Q) and (P implies Q)) implies (not P ) looks like this:

P Q (( not Q) and (P implies Q)) implies (not P )

T T F F T T F
T F T F F T F
F T F F T T T
F F T T T T T

(The next to last column is the truth value of the whole statement.)

(C) The truth table for (P or (Q and R)) if and only if ((P or Q) and (P or R)):

P Q R (P or (Q and R)) if and only if ((P or Q) and (P or R))

T T T T T T T T T
T T F T F T T T T
T F T T F T T T T
T F F T F T T T T
F T T T T T T T T
F T F F F T T F F
F F T F F T F F T
F F F F F T F F F

(The overall truth value is given by the column lined up under the “if and only if.”)

(D) These are all tautologies.

II.

(A) We have A = {−2, 0, 2, 4, 6, 8, 10} and B = {1, 2, 3, 4, 5} so A ∩B = {2, 4}.
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(B) Ac consists of all integers not in A, so

Ac = {. . . ,−5,−4,−3,−1, 1, 3, 5, 7, 9, 11, 12, 13, . . .}

(all integers ≤ −3, all integers ≥ 11 and the odd numbers between −3 and 11.) B∪C consists
of all the integers in the set

B ∪ C = {. . . ,−7,−6,−5, 1, 2, 3, 4, 5, 8, 9, 10, . . .}.

Hence Ac ∩ (B ∪ C) consists of all elements of the set

{. . . ,−7,−6,−5, 1, 3, 5, 9, 11, 12, 13, . . .}

(that is, all integers ≤ −5, all integers ≥ 11, and 1, 3, 5, 9.)

(C) Cc = {−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6}.

III. There are several different ways you might show this. One would be to construct a truth table
for the statement

(x /∈ A ∩B) if and only if ((x /∈ A) or (x /∈ B)).

What makes that work is the DeMorgan Law for negating an statement with an and. So another
sort of proof would be to use the definitions of complements, unions, and intersections, plus the
DeMorgan Law like this:

x ∈ (A ∩B)c ⇔ not(x ∈ A ∩B) (by definition of complement)

⇔ not((x ∈ A) and (x ∈ B)) (by definition of intersection)

⇔ not(x ∈ A) or not(x ∈ B) (by DeMorgan)

⇔ (x ∈ Ac) or (x ∈ Bc) (by definition of complement)

⇔ x ∈ Ac ∪Bc (by definition of union)

Therefore (A ∩B)c = Ac ∪Bc.

IV.

(A) The contrapositive (with application of DeMorgan) : “If A ∩ B 6= ∅, then A ∩ [0, 1] 6= ∅ or
B ∩ [0, 1] 6= B.

(B) The converse: If A∩B = ∅, then A∩ [0, 1] = ∅ and B ∩ [0, 1] = B. The contrapositive is true
because it is logically equivalent to the given statement. You can see that is true because if
A ∩ [0, 1] = ∅ and B ∩ [0, 1] = B, then B is entirely contained in [0, 1] and hence A ∩B = ∅.

V.

(A) This is true – a proof would go like this. If x ∈ 12Z, then x = 12k for some k ∈ Z. Hence
x = 6 · (2k). Since k ∈ Z, 2k ∈ Z as well, and this shows x ∈ 6Z. Hence 12Z ⊆ 6Z.
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(B) This is also true. ⊆: The proof of the inclusion 120Z ⊆ 24Z ∩ 30Z is similar to the proof
in part (A). If x ∈ 120Z, then x = 120k for some integer k. Hence since 120 = 24 · 5 and
120 = 30 · 4, we can also write x = 24 · (5k) and x = 30 · (4k). Since k is an integer, 4k and
5k are also integers, so this shows x ∈ 24Z and x ∈ 30Z and that shows x ∈ 24Z ∩ 30Z.

⊇: For the other inclusion, suppose x ∈ 24Z and x ∈ 30Z. Then x = 24k for some integer k,
and it is also true that x = 30` for some integer `. (Note that k cannot equal ` so we need
two separate names here :) ) If 24k = 30`, then note that 5 must divide the left hand side
too, since it divides the 30. But that can only happen if k = 5m for some integer m, and
hence x = 24 · (5m) = 120m. Therefore x ∈ 120Z. (Note: I’m using some facts about integers
that we have not formally proved yet here. In particular, I’m relying on the fact that each
integer can be factored uniquely into a product of primes. Since 5 is a prime and it appears
in the factorization of the 30 = 2 · 3 · 5, then it must appear in the factorization of the 24k as
well. But 24 = 23 · 3 does not contain a factor of 5, so k must contain a factor of 5.)

(C) Full proof omitted. You can get one proof by truth tables if you reverse and’s and or’s in the
truth table from I (C).

(D) This is true. The contrapositive form is: If n is even, then n2 is even, and this follows like
this: If n is even, then n = 2k for some k ∈ Z. Hence n2 = 4k2 = 2 · (2k). Since k is an
integer, so is 2k, and this shows n2 is even.

VI.

(A) (Proof by contradiction.) Let m,n be integers with no common factors, and assume that m
n

satisfies
(
m
n

)2
= 3. Then m2 = 3n2. This shows m2 is divisible by 3, and by the given fact

m = 3k for some integer k. But if we substitute that in for m we get (3k)2 = 9k2 = 3n2.
This implies 3k2 = n2 and hence n2 is also divisible by 3. By the given fact again, we see
that n must be divisible by 3, and that contradicts the assumption that m,n had no common
factors. The thing that produced the contradiction was assuming that

(
m
n

)2
= 3, so that

equation cannot be true, and hence m
n 6=

√
3.

(B) If you thought about this, you might have seen that the statement n2 ∈ mZ implies n ∈ mZ
is true when m = 5, 6, 7, but not for m = 4, 8, 9. For instance if n = 2, then 22 = 4 ∈ 4Z
even though 2 /∈ 4Z. Similarly, if n = 4, then 42 = 16 ∈ 8Z, even though 4 /∈ 8Z. The general
pattern is that integers m that are divisible by the square of some prime number do not have
this property. But integers m that are “square-free” (i.e. not divisible by the square of any
prime number) have this property.

VII.

(A) (Proof by induction on n): When n = 1, we have 1 · 2 = 2 = (1− 1) · 22 + 2. So the base case
is established. For the induction step, we assume

1 · 2 + 2 · 22 + 3 · 23 + · · ·+ k · 2k = (k − 1)2k+1 + 2

3



and consider the next integer k + 1. The sum on the left of the formula to be proved is

(1 · 2 + 2 · 22 + 3 · 23 + · · ·+ k · 2k) + (k + 1)2k+1.

By the induction hypothesis the terms in the parentheses add up to (k − 1)2k+1 + 2. So the
sum becomes

(k − 1)2k+1 + 2 + (k + 1)2k+1 = 2 · k · 2k+1 + 2 = ((k + 1)− 1)2k+2 + 2,

which is what we wanted to show.

(B) (Proof by induction on n): When n = 1, we have

12 = 1 =
(1)(2− 1)(2 + 1)

6
,

so the base case is established. Now assume

12 + 32 + 52 + · · ·+ (2k − 1)2 =
k(2k − 1)(2k + 1)

3

and consider
(12 + 32 + 52 + · · ·+ (2n− 1)2) + (2(n + 1)− 1)2.

By the induction hypothesis the terms in the parentheses add up to k(2k−1)(2k+1)
3 , so this sum

is
k(2k − 1)(2k + 1)

3
+ (2k + 1)2.

We can factor out the 2k + 1 to obtain

(2k + 1) ·
(
k(2k − 1)

3
+ (2k + 1)

)
.

By basic algebra, this equals

(2k + 1) ·
(

2k2 + 5k + 3

3

)
=

(k + 1)(2k + 1)(2k + 3)

3
,

which is what we wanted to prove.

(C) Here the base case is n = 6, and 63 = 216 < 720 = 6! is true so the base case is established.
(Note that the inequality is not true for n = 5!) Now assume k3 < k! and consider (k + 1)3

and (k + 1)!. We have (k + 1)! = (k + 1)k!, so by the induction hypothesis,

(k + 1)! = (k + 1)k! > (k + 1)k3

It suffices to show this is greater than (k+1)3, and that is equivalent to k3 > (k+1)2 (canceling
one factor of k + 1). Now if k ≥ 6, then (k + 1)2 = k2 + 2k + 1 < k2 + 2k2 + k2 = 4k2 < k3,
and turning these inequalities around we get

k3 > (k + 1)2,

as desired.
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