A) (15) State the Completeness Axiom ('Axiom C') for the real numbers.

Solution: The statement is - Let $A \subset \mathbb{R}$ be a nonempty a subset that is bounded above. Then A has a least upper bound $b \in \mathbb{R}$.

Note:

(1) Saying $b=\sup (A)$, the least upper bound, means first that b is an upper bound for $A-$ that is, all $x \in A, x \leq b$ - and moreover,
(2) If $x \leq b^{\prime}$ for all $x \in A$, then $b \leq b^{\prime}$. (Intuitively, b is the smallest number that is an upper bound for A.)
(3) The assumption that $A \neq \emptyset$ is necessary because \emptyset is bounded above, but every $b \in \mathbb{R}$ satisfies the condition $x \leq b$ for all $x \in \emptyset$ (there aren't any such x, so the condition is vacuously true). There is no smallest upper bound for A in that case.
B) (15) Let $A \subset \mathbf{R}$ and $2 A=\{2 x: x \in A\}$. Show that if $\sup (A)=c$, then $\sup (2 A)=2 c$.

Solution 1: (a direct proof) First, $\operatorname{since} \sup (A)=c$, we have that c is an upper bound for A. This implies that $x \leq c$ for all $x \in A$. Since $2>0$, we can multiply both sides of this inequality by 2 to yield $2 x \leq 2 c$ for all $x \in A$. This shows that $2 c$ is an upper for $2 A$ as in point (1) in the solution for part A above. Now, to show $2 c$ is the least upper bound, we need to show that point (2) also holds for the bound $2 c$ and the set $2 A$. So let d be any other upper bound for the set $2 A$. This means that $2 x \leq d$ for all $x \in A$, so $x \leq \frac{d}{2}$ for all x in A. By point (2) for the upper bound c for A, this implies $c \leq \frac{d}{2}$. But since $2>0$, that implies $2 c \leq d$. Hence $2 c=\sup (2 A)$.

Solution 2: The proof of point (1) is the same as before - if $x \leq c$, for all $x \in A$, then $2 x \leq 2 c$, so $2 c$ is an upper bound for $2 A$. Now we argue by contradiction for point (2). Suppose $2 c$ is not the least upper bound of $2 A$. That means that there is some $d<2 c$ that is also an upper bound for $2 A$: $2 x \leq d$ for all $2 x \in 2 A$. But multiplying by $1 / 2>0$ yields $x \leq \frac{d}{2}$ for all $x \in A$. This implies $\frac{d}{2}$ is an upper bound for A. However $d<2 c$ implies $\frac{d}{2}<c$ and that contradicts the assumption that c was the least upper bound of A.

Some further comments: It's tempting to say that $c<2 c$ and try to relate c and $2 c$ that way. However, this is only true if $c>0$. If $c<0$, then in fact $2 c<c$.

