MATH 243 – Mathematical Structures Solutions for Quiz 9 – December 1, 2017

A) (15) State the Completeness Axiom ('Axiom C') for the real numbers.

Solution: The statement is – Let $A \subset \mathbb{R}$ be a nonempty a subset that is bounded above. Then A has a least upper bound $b \in \mathbb{R}$.

Note:

- (1) Saying $b = \sup(A)$, the least upper bound, means first that b is an upper bound for A that is, all $x \in A$, $x \leq b$ and moreover,
- (2) If $x \leq b'$ for all $x \in A$, then $b \leq b'$. (Intuitively, b is the smallest number that is an upper bound for A.)
- (3) The assumption that $A \neq \emptyset$ is necessary because \emptyset is bounded above, but every $b \in \mathbb{R}$ satisfies the condition $x \leq b$ for all $x \in \emptyset$ (there aren't any such x, so the condition is vacuously true). There is no smallest upper bound for A in that case.
- B) (15) Let $A \subset \mathbf{R}$ and $2A = \{2x : x \in A\}$. Show that if $\sup(A) = c$, then $\sup(2A) = 2c$.

Solution 1: (a direct proof) First, since $\sup(A) = c$, we have that c is an upper bound for A. This implies that $x \leq c$ for all $x \in A$. Since 2 > 0, we can multiply both sides of this inequality by 2 to yield $2x \leq 2c$ for all $x \in A$. This shows that 2c is an upper for 2A as in point (1) in the solution for part A above. Now, to show 2c is the least upper bound, we need to show that point (2) also holds for the bound 2c and the set 2A. So let d be any other upper bound for the set 2A. This means that $2x \leq d$ for all $x \in A$, so $x \leq \frac{d}{2}$ for all x in A. By point (2) for the upper bound c for A, this implies $c \leq \frac{d}{2}$. But since 2 > 0, that implies $2c \leq d$. Hence $2c = \sup(2A)$.

Solution 2: The proof of point (1) is the same as before – if $x \leq c$, for all $x \in A$, then $2x \leq 2c$, so 2c is an upper bound for 2A. Now we argue by contradiction for point (2). Suppose 2c is not the least upper bound of 2A. That means that there is some d < 2c that is also an upper bound for 2A: $2x \leq d$ for all $2x \in 2A$. But multiplying by 1/2 > 0 yields $x \leq \frac{d}{2}$ for all $x \in A$. This implies $\frac{d}{2}$ is an upper bound for A. However d < 2c implies $\frac{d}{2} < c$ and that contradicts the assumption that c was the least upper bound of A.

Some further comments: It's tempting to say that c < 2c and try to relate c and 2c that way. However, this is only true if c > 0. If c < 0, then in fact 2c < c.