College of the Holy Cross, Spring Semester, 2005

 Math 132 Answers to Review Sheet for Midterm 31. The graph at right shows either a pdf or a cdf. Which type of function is it, and why? If it is a pdf, sketch the graph of the corresponding cdf; if it is a cdf, sketch the graph of the corresponding pdf.

Solution The graph encloses more than one unit of area (and is non-decreasing and seems to approach 1 as $x \rightarrow \infty$), so it's a cdf. The corresponding density has one bump, centered just to the right of $x=0$.
2. Let x be the size of an email message in kilobytes (KB). An ISP finds that the fraction of emails between x and $x+\Delta x$ KB in size is about $c x e^{-0.01 x} \Delta x$ (that is, the density function for x is $\left.p(x)=c x e^{-0.01 x}\right)$.
(a) $c=(0.01)^{2}=10^{-4}$
(b) Fraction of email messages that are at most 100 KB in size: $1-\frac{2}{e} \simeq 0.264$
(c) Fraction that are at least 50 KB in size: $\frac{3}{2 \sqrt{e}} \simeq 0.91$.
(d) Median size of an email message: About 167.8 KB.
3. In a certain population, the height x of an individual in inches is normally distributed, with a mean of 68 and a standard deviation of 4 . In other words, heights are modeled by the density function $p(x)=\frac{1}{4 \sqrt{2 \pi}} e^{-(x-68)^{2} / 32}$.
(a) Write down a definite integral whose value gives the fraction of the population whose height is between 68 and 72 inches, and perform the change of variables $z=(x-68) / 4$ on your integral.

Solution $\frac{1}{4 \sqrt{2 \pi}} \int_{68}^{72} e^{-(x-68)^{2} / 32} d x=\frac{1}{\sqrt{2 \pi}} \int_{0}^{1} e^{-z^{2} / 2} d z$.
(b) Write out the Taylor series for e^{u} giving both the first four non-zero terms and the summation form.

Solution $\quad e^{u}=\sum_{k=0}^{\infty} \frac{u^{k}}{k!}=1+u+\frac{u^{2}}{2!}+\frac{u^{3}}{3!}+\cdots$
(c) Use your answer from (b) to find the Taylor series for

$$
\int_{0}^{x} e^{-z^{2} / 2} d z
$$

giving both the first four non-zero terms and the summation form.

Solution $\int_{0}^{x} e^{-z^{2} / 2} d z=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1) \cdot 2^{k} \cdot k!}=x-\frac{x^{3}}{3 \cdot 2}+\frac{x^{5}}{5 \cdot 2^{2} \cdot 2!}-\frac{x^{7}}{7 \cdot 2^{3} \cdot 3!}+\cdots$
(d) Estimate the integral in part (a) using the four-term series from part (c).

Solution $\frac{1}{\sqrt{2 \pi}} \int_{0}^{1} e^{-z^{2} / 2} d z \simeq \frac{1}{\sqrt{2 \pi}} \sum_{k=0}^{3} \frac{(-1)^{k}}{(2 k+1) \cdot 2^{k} \cdot k!}=\frac{1}{\sqrt{2 \pi}}\left(1-\frac{1}{6}+\frac{1}{40}-\frac{1}{336}\right) \simeq 0.34$
(The absolute error of this estimate is at most $\frac{1}{\sqrt{2 \pi}} \cdot \frac{1}{9 \cdot 2^{4} \cdot 4!} \simeq 0.0001$
4. (a) Use the Comparison Test to determine whether or not $\sum_{n=0}^{\infty} \frac{n+3^{n}}{2^{n}}$ converges.

Solution Diverges by comparison with $\sum_{n=0}^{\infty} \frac{3^{n}}{2^{n}}=\sum_{n=0}^{\infty}\left(\frac{3}{2}\right)^{n}$.
(b) Use the Integral Test to determine whether or not $\sum_{k=0}^{\infty} \frac{k}{e^{k}}$ converges.

Solution Converges (see also Question 2 above.)
(c) Use the Ratio Test to determine whether or not $\sum_{k=0}^{\infty} \frac{3^{n}}{n!}$ converges.

Solution Converges, since $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{3}{n+1}\right|=0<1$.
5. Determine (with justification!) whether or not the following series converge:

$$
\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}, \quad \sum_{k=3}^{\infty}(-1)^{k-1} \frac{1}{\ln k}, \quad \sum_{n=10}^{\infty} \frac{n^{2}+n}{3 n^{3}-1000}, \quad \sum_{n=1}^{\infty} \frac{1}{n^{1.01}} .
$$

Solution The first and third diverge: Use the integral test for the first, comparison with the harmonic series for the third. The second and fourth converge: The second is alternating, and the terms decrease to 0 in absolute value, while the fourth converges by the integral test.
6. Let $f(x)=\sqrt{1+x}=(1+x)^{1 / 2}$. Find the 4th degree Taylor polynomial of f centered at $a=0$. Find a factorial expression for the general term of the Taylor series.

Solution $\quad p_{4}(x)=1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}-\frac{15}{16 \cdot 24} x^{4}$. The first few derivatives are $f^{\prime}(0)=\frac{1}{2}$,
$f^{(2)}(0)=-\frac{1}{2} \cdot \frac{1}{2} \quad f^{(3)}(0)=\frac{3}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \quad f^{(4)}(0)=-\frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \quad f^{(5)}(0)=\frac{7}{2} \cdot \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$.
For $k \geq 2$, the general expression is

$$
f^{(k)}(0)=(-1)^{k-1} \frac{(2 k-3)}{2} \cdot \frac{(2 k-5)}{2} \cdots \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=(-1)^{k-1} \frac{(2 k-2)!}{2^{k}} \cdot \frac{1}{2^{k-1}(k-1)!}
$$

We do not expect you to construct such formulas, and certainly not under test pressure.
7. Consider the geometric series $f(x)=\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x}$.
(a) Differentiate and multiply by x; the Taylor series of $x f^{\prime}(x)=\frac{x}{(1-x)^{2}}$ is $\sum_{k=0}^{\infty} k x^{k}$.
(b) Integrate; the Taylor series of $-\ln (1-x)$ is $\sum_{k=0}^{\infty} \frac{x^{k+1}}{k+1}=\sum_{k=1}^{\infty} \frac{x^{k}}{k}$.
(c) Find the radius of convergence of the series in part (b), and investigate convergence at the endpoints.

Solution The radius is 1 , the interval of convergence is $-1 \leq x<1$.
(d) Set $x=1 / 2$ to see that $\sum_{k=1}^{\infty} \frac{1}{k \cdot 2^{k}}=\ln 2, \sum_{k=1}^{\infty} \frac{k}{2^{k}}=2$.
8. For each of the given power series, find the interval of convergence.

$$
f(x)=\sum_{n=1}^{\infty} \frac{(2 x)^{n}}{\sqrt{n}}, \quad g(x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{(x-5)^{n}}{n \cdot 3^{n}} .
$$

(In particular, give the radius of convergence, and investigate convergence at the endpoints.)

Solution For $f(x),-\frac{1}{2} \leq x<\frac{1}{2}$. For $g(x), 2<x \leq 8$. (The first has radius $1 / 2$, the second has radius 3.)
9. The second degree Taylor polynomial of $f(x)$ at $a=0$ is $p_{2}(x)=C_{0}+C_{1} x+C_{2} x^{2}$. What can you say about the signs of C_{0}, C_{1}, and C_{2} if you know the graph of $f(x)$ is:

Solution $\quad C_{0}<0, C_{1}$ and $C_{2}>0$.
10. Use the error bound for Taylor approximations to estimate the number of decimal places of accuracy if the 6 th degree Taylor polynomial at $a=0$ is used to approximate $\cos (0.8)$. Do the same for the nth degree polynomial in general. What happens to the error bound as $n \rightarrow \infty$?

Solution With a polynomial of degree $2 n$, the "standard" error bound is

$$
\left|E_{2 n}(0.8)\right| \leq \frac{(0.8)^{2 n+2}}{(2 n+2)!},
$$

the absolute value of the first term of the Taylor series that is omitted from the approximating polynomial. (This observation rests on the fact that the series for $\cos (0.8)$ alternates and the terms decrease in absolute value.)
In particular, the degree- 6 polynomial estimate is accurate to $\pm 4.16 \times 10^{-6}$, or 5 decimal places. The error bounds decrease rapidly to 0 as $n \rightarrow \infty$: The numerators decrease exponentially and the denominators grow "super-exponentially" (asymptotically faster than any exponential function).

