Math 131, Midterm 3 Solutions

1. [5 points each] Match each parametric curve with its graph. (Each graph shows the square $-1 \leq x \leq 1,-1 \leq y \leq 1$.)
(a) $x(t)=-1+2 t, y(t)=1-2 t, 0 \leq t \leq 1$
○ I IIIIIIV $\otimes \mathrm{V}$

Explanation. This is a line with slope $-2 / 2=-1$.
(b) $x(t)=\cos (2 t), y(t)=\sin (2 t), 0 \leq t \leq \pi$
$\otimes \mathrm{I} \bigcirc \mathrm{II}$III IV $\bigcirc \mathrm{V}$ Explanation. Points (x, y) on the curve satisfy $x^{2}+y^{2}=1$, so they lie on the unit circle.
(c) $x(t)=\cos t, y(t)=\frac{1}{2} \sin t, 0 \leq t \leq 2 \pi$

○ I IIIII

Q IV
Explanation. This is the standard parametrization of the unit circle, but with the y-coordinate scaled by a factor of $1 / 2$, so it must be an ellipse.
(d) $x(t)=1-2 t, y(t)=-t, 0 \leq t \leq 1$
$\bigcirc I \otimes I I$III IV
Explanation. This is a line with slope $-1 /-2=1 / 2$.

II

III

IV

V
2. [5 points each] Compute the indicated limits. Show all work for full credit.
(a) $\lim _{x \rightarrow 1} \frac{\cos \left(\frac{\pi}{2} x\right)}{x-1}$

Answer. Since $\cos (\pi / 2)=0$, the numerator and denominator both approach zero. By L'Hopital's Rule,

$$
\lim _{x \rightarrow 1} \frac{\cos \left(\frac{\pi}{2} x\right)}{x-1}=\lim _{x \rightarrow 1} \frac{-\frac{\pi}{2} \sin \left(\frac{\pi}{2} x\right)}{1}=-\frac{\pi}{2}
$$

$$
\text { Limit }=-\frac{\pi}{2}
$$

(b) $\lim _{x \rightarrow 0} \frac{x^{2}+1}{x^{2}+3}$

Answer.

$$
\lim _{x \rightarrow 0} \frac{x^{2}+1}{x^{2}+3}=\frac{\lim _{x \rightarrow 0} x^{2}+1}{\lim _{x \rightarrow 0} x^{2}+3}=\frac{1}{3}
$$

$$
\text { Limit }=\frac{1}{3}
$$

(c) $\lim _{x \rightarrow \infty} \frac{x \ln x}{x^{1.01}}$ Answer. First simplify.

$$
\lim _{x \rightarrow \infty} \frac{x \ln x}{x^{1.01}}=\lim _{x \rightarrow \infty} \frac{\ln x}{x^{0.01}}
$$

The numerator and denominator both approach ∞, so by L'Hopital's Rule,

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{x^{0.01}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{0.01 x^{-0.99}}=\lim _{x \rightarrow \infty} \frac{1}{0.01 x^{0.01}}=0
$$

Limit =
3. Each part refers to the function $f(x)=2 x^{3}-6 x^{2}$.
(a) [10 points] Find and classify (local min/max, or neither) the critical points of f.

Answer. The derivative of f is $f^{\prime}(x)=6 x^{2}-12 x=6 x(x-2)$, so the critical points of f are $x=0$ and $x=2$.
To determine the type of each critical point, apply either the first or second derivative test.

First Derivative Test. Since $f^{\prime}(-1)=18, f^{\prime}(1)=-6$ and $f^{\prime}(3)=18$, the sign of f^{\prime} changes from + to - at $x=0$, so f has a local maximum at $x=0$, and the sign of f^{\prime} changes from - to + at $x=2$, so f has a local minimum at $x=2$.
Second Derivative Test. The second derivative of f is $f^{\prime \prime}(x)=12 x-12$. Since $f^{\prime \prime}(0)=-12$ is negative, f has a local maximum at $x=0$, and since $f^{\prime \prime}(2)=12$ is positive, f has a local minimum at $x=2$.
(b) [5 points] Find the maximum and minimum values of $f(x)$ if $-\frac{3}{2} \leq x \leq \frac{5}{2}$.

Answer. To find the global maximum and minimum, evaluate f at each critical point and at each endpoint:

$$
\begin{aligned}
f(0) & =0 \\
f(2) & =-8 \\
f\left(-\frac{3}{2}\right) & =-20.25 \\
f\left(\frac{5}{2}\right) & =-6.25
\end{aligned}
$$

Minimum value:
-20.25
(c) [5 points] In the grid provided, sketch the graph $y=f(x)$ for $-1 \leq x \leq 3$. (Note that axis labels are provided.) For full credit, clearly indicate the critical and inflection point(s) in this interval, and label each such point with both coordinates. Answer. $f^{\prime \prime}(x)=12 x-12=12(x-1)$, so $f^{\prime \prime}$ changes sign at $x=1$. Therefore f has an inflection point at $(1,-4)$. The critical points have coordinates $(0,0)$ and $(2,-8)$.

4. [15 points] Crusader Movie Rentals finds that they can rent 160 movies per night at $\$ 1$ per movie. For every dollar that the rental fee increases, 40 fewer movies are rented. What price should be charged to maximize the revenue (total rental income)?

Answer. Let p be the price in dollars per movie, and let n be the number of movies that can be rented at that price. The revenue is then $R=n p$. Let x be the increase in the price from 1 dollar. Then $p=1+x$, and $n=160-40 x$, so

$$
R(x)=(1+x)(160-40 x)=160+120 x-40 x^{2}
$$

The domain of R is $-1 \leq x \leq 4$. Since

$$
R^{\prime}(x)=120-80 x
$$

the critical point of R is $x=\frac{3}{2}=1.5$. Since $R(-1)=R(4)=0$ and $R(1.5)=250$, the revenue is maximized when $x=1.5$, i.e. when $p=2.5$.

$$
\text { Revenue maximized when } p=\$ 2.50
$$

5. [15 points] Find the equation of the line tangent to the curve $x y-2 x-3 y+1=0$ at the point $(-2,1)$.
Answer. Use implicit differentiation:

$$
x \frac{d y}{d x}+1 \cdot y-2-3 \frac{d y}{d x}=0
$$

Now solve for $\frac{d y}{d x}$:

$$
\frac{d y}{d x}=\frac{2-y}{x-3}
$$

When $x=-2$ and $y=1$,

$$
\frac{d y}{d x}=\frac{1}{-5}=-\frac{1}{5} .
$$

So the slope of the tangent line is $m=-\frac{1}{5}$. Applying the point-slope formula gives $y-1=-\frac{1}{5}(x+2)$.

Equation of tangent line at $(-2,1)$: $y-1=-\frac{1}{5}(x+2)$ or $y=-\frac{1}{5} x+\frac{3}{5}$
6. A boat is drawn into a dock by a rope over a small pulley. The pulley is five feet higher than the bow of the boat (see figure). Let ℓ be the length of rope, x the distance from the boat to the dock.

(a) [5 points] Find an equation relating ℓ and x, and determine x when $\ell=13$.

Answer. Use the Pythagorean Theorem.
Equation relating ℓ and $x: \quad x^{2}+25=\ell^{2}$

$$
\text { When } \ell=13, x=12
$$

(b) [10 points] Suppose the rope is drawn in at $3 \mathrm{ft} / \mathrm{sec}$. How fast is the boat moving when the length of the rope is 13 feet?
Answer. We are given $\frac{d \ell}{d t}=-3$ and want to find $\frac{d x}{d t}$ when $\ell=13$. Differentiate the equation $x^{2}+25=\ell^{2}$ with respect to t :

$$
2 x \frac{d x}{d t}=2 \ell \frac{d \ell}{d t}
$$

When $\ell=13, x=12$, so

$$
\begin{aligned}
2(12) \frac{d x}{d t} & =2(13)(-3) \\
\frac{d x}{d t} & =-3.25
\end{aligned}
$$

$$
\text { Speed }=3.25 \mathrm{ft} / \mathrm{sec}
$$

